

Lecture Notes in Computer Science 3836
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jean-Marc Pierson (Ed.)

Data Management
in Grids

First VLDB Workshop, DMG 2005
Trondheim, Norway, September 2-3, 2005
Revised Selected Papers

13

Volume Editor

Jean-Marc Pierson
Lyon Research Center for Images and Intelligent Information Systems (LIRIS)
National Institute of Applied Science (INSA de Lyon)
69631 Villeurbanne, France
E-mail: jean-marc.pierson@liris.cnrs.fr

Library of Congress Control Number: 2005938219

CR Subject Classification (1998): H.2, H.4, H.3, H.2.4, E.2, H.5, C.2

ISSN 0302-9743
ISBN-10 3-540-31212-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31212-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11611950 06/3142 5 4 3 2 1 0

Message from the Program Chair

It was my great pleasure to welcome you in Trondheim for the first “Data Management
in Grids” workshop, associated to the VLDB conference. Since the mid-1990s and the
emergence of Grids, many research activities have been initiated in relation to data
management in these dynamic, heterogeneous and cross-organizational environments.
The database community can offer its unique expertise in the management of very large,
widely distributed databases. Conversely, Grids offer a novel and very exciting field of
research for database scientists both in terms of application domains and fundamental
research.

This workshop was intended to bring together these two communities, and thus
to offer a unique workspace for researchers to discuss and exchange ideas about the
emerging challenges and opportunities offered by Data Grids. The co-location with
the VLDB conference attracted researchers from both fields and launched interesting
discussions.

The call for papers attracted 24 submissions. From the submissions, the Program
Committee selected nine regular papers for the one-day workshop. The international
flavor (seven countries represented for the final program) produced a very enriching and
interactive workshop. In addition to the paper presentations, the program also included
two invited talks : “Globally Distributed Data” by Reagan Moore, San Diego Super-
computing Center, USA, and “An Outline of the Global Grid Forum Data Access and
Integration Service Specifications,” by Mario Antonioletti, University of Edinburgh,
UK.

I would like to thank all those who submitted papers for consideration, the partici-
pants of the conference, and the members of the Program Committee for their hard and
conscientious work, their time and their careful effort in the reviewing process.

2005 Jean-Marc Pierson

Organization

Program Chair
Jean-Marc Pierson, LIRIS, INSA-Lyon, France

Program Committee
Lionel Brunie, LIRIS, France
Rajkumar Buyya, University of Melbourne, Australia
Neil P. Chue Hong, EPCC, The University of Edinburgh, UK
Alvaro A.A. Fernandes, The University of Manchester, UK
Ian Foster, Argone National Laboratory, USA
Dieter Gawlick, Oracle, USA
Peter Kacsuk, Mta Sztaki Research Institute, Hungary
Peter Kunszt, CERN, Switzerland
Stephen A. Langella, The Ohio State University, USA
Susan Malaika, IBM, USA
Johan Montagnat, CNRS, France
Reagan Moore, SDSC, USA
Gianluca Moro, DEIS - University of Bologna, Italy
Brigitte Plateau, ID-IMAG, France
Thierry Priol, IRISA, France
Heinz Stockinger, University of Vienna, Austria

External Reviewers
Gabriel Antoniu
Yves Denneulin
Sushant Goel
Yvon Jégou
Fabrice Jouanot
Stefano Lodi
Gabriele Monti
Ludwig Seitz
Olivier Valentin
Christine Verdier

Table of Contents

Globally Distributed Data
Reagan W. Moore . 1

XML Data Integration in OGSA Grids
Carmela Comito, Domenico Talia . 4

Towards Dynamic Information Integration
Jürgen Göres . 16

Adapting to Changing Resource Performance in Grid Query
Processing

Anastasios Gounaris, Jim Smith, Norman W. Paton,
Rizos Sakellariou, Alvaro A.A. Fernandes, Paul Watson 30

An Adaptive Distributed Query Processing Grid Service
Fabio Porto, Vińıcius F.V. da Silva, Márcio L. Dutra,
Bruno Schulze . 45

Framework for Querying Distributed Objects Managed by a Grid
Infrastructure

Ruslan Fomkin, Tore Risch . 58

An Outline of the Global Grid Forum Data Access and Integration
Service Specifications

Mario Antonioletti, Amy Krause, Norman W. Paton 71

File Caching in Data Intensive Scientific Applications on
Data-Grids

Ekow Otoo, Doron Rotem, Alexandru Romosan,
Sridhar Seshadri . 85

RRS: Replica Registration Service for Data Grids
Arie Shoshani, Alex Sim, Kurt Stockinger . 100

Datagridflows: Managing Long-Run Processes on Datagrids
Arun Jagatheesan, Jonathan Weinberg, Reena Mathew, Allen Ding,
Erik Vandekieft, Daniel Moore, Reagan Moore, Lucas Gilbert,
Mark Tran, Jeffrey Kuramoto . 113

X Table of Contents

Servicing Seismic and Oil Reservoir Simulation Data Through Grid
Data Services

Sivaramakrishnan Narayanan, Tahsin Kurc, Umit Catalyurek,
Joel Saltz . 129

Author Index . 143

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 1 – 3, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Globally Distributed Data

Reagan W. Moore

San Diego Supercomputer Center,
San Diego, CA

moore@sdsc.edu

The management of globally distributed data is simplified through the use of data
grids which enable data sharing environments. Data grids provide both the
interoperability mechanisms needed to interact with legacy storage systems and
legacy applications, as well as the logical name spaces needed to identify files,
resources, and users. Data grids also provide support for consistent management of
state information about each file within the distributed environment. The state
information includes access controls, descriptive metadata, and administration
metadata. These capabilities enable data virtualization, the ability to manage data
independently of the chosen storage repositories. Applications that manage globally
distributed data include data grid federations, distributed digital libraries, and
distributed persistent archives.

The Storage Resource Broker (SRB), developed at the San Diego Supercomputer
Center, is an example of generic data grid software infrastructure that uses database
technology to manage state information for globally shared collections. The software
has been under development since 1995, initially funded by the Defense Advanced
Research Project Agency to support Massive Data Analysis Systems. Subsequent
projects focused on the application of the technology in support of distributed data
management. Across most of the projects that use data grid technology, the goal of
distributed data management was either:

• sharing of data. Scientists share original data sets while pursuing research.
• publication of data. Scientists register data sets used in the research into a

digital library for future discovery and access.
• preservation of data. This corresponds to the creation of standard digital

reference sets that are then used as the intellectual capital of the discipline.
New theory or observational results are compared against these reference
data. The technology that manages infrastructure independence (ability to
migrate collections onto new hardware and software systems) is called a
persistent archive.

The application areas included a patent digital library for the US Patent and
Trademark Office; Department of Energy high energy physics data grids; prototype
research persistent archives for the National Archives and Records Administration;
National Library of Medicine digital library for digital embryo images; National
Science Foundation persistent archive for the National Science Digital Library;
National Institute of Health Biomedical Informatics Research Network data grid for
neuroscience data; NSF Real-time Observatories, Applications, and Data
Management network for sensor data; and NSF National Virtual Observatory for
astronomy sky surveys.

2 R.W. Moore

Each project defined standard descriptive metadata, standard data encoding
formats, and standard services that would be used to manipulate the data. The
descriptive metadata were organized in a collection hierarchy along with
administrative metadata that represented state information managed by the data grid.
Data grids separated the management of the state information from the storage of the
data. The result of each operation on the material within the data grid was tracked
and the associated state information was associated with the files that were
manipulated. An example is the creation of a replica of a file. The location of the
replica and the date it was created were registered into a metadata catalog that is
maintained in a relational database.

A typical project assembled a shared collection that contained 1-million to 2-
million files, with the largest shared collection holding over 27 million files. The
sizes of the collections ranged from 1-2 terabytes to collections of simulation data that
exceeded 150 terabytes. The collections were organized by groups of researchers that
contained 20 persons up to several hundred persons.

SDSC is approaching the issue of global data management from three different
perspectives:

1. Data virtualization: Create a shared collection that manages the name spaces
for resources, files, users, metadata, and access controls independently from
the storage system.

2. Access virtualization: Integrate distributed data management into major
applications such as digital libraries, persistent archives, and real-time sensor
data management systems.

3. State information virtualization: Define the consistency constraints that are
applied in the update of state information, and provide the ability to change
the constraints when federating data grids, modifying views of collections,
managing data placement, or asserting global consistency properties.

The data virtualization efforts are exemplified through the use of the SRB to
manage logical name spaces to provide persistent global naming. In addition, the
SRB differentiates between the access methods required by preferred interfaces, and
the storage repository protocols required to interact with legacy storage systems. The
SRB maps from the access interface protocol to a standard set of operations for
manipulating data and metadata. The SRB then maps from a standard set of
operations that will be performed at a storage repository to the particular protocol
required by that system. The result is the ability to manage data that is distributed
across multiple types of storage systems, while providing a uniform access interface.

The access virtualization builds upon the data virtualization through the integration
of advanced user interfaces. A major example is the integration of digital library
technology with data grid technology. The goal is the ability to provide digital library
services on collections that are distributed across multiple storage systems, and
authentication domains.

An example is the integration of the DSpace digital library, developed at MIT and
Hewelett Packard, with the Storage Resource Broker data grid. The resulting system
is able to support:

 Globally Distributed Data 3

• creation of DSpace collections whose size is greater than the local disk
capacity

• replication of digital entities between sites for disaster recovery
• access to digital entities that reside in another DSpace instance

A similar effort is being done to integrate the Fedora digital library, developed at
University of Virginia and Cornell University, on top of the Storage Resource Broker
data grid.

The state information virtualization is a new research effort with the goal of
producing the next generation of data management technology. When federating data
grids that manage different consistency constraints, the ability to characterize the
chosen constraints becomes important. Building a shared collection that crosses
multiple environments with different consistency requirements can be accomplished
through the direct association of the governing constraint with each metadata
attribute. Two types of constraints are required: procedural rules that are followed
when state information is updated, and global consistency constraints that can be
verified as properties of a sub-collection. This latter example is one of the major
challenges of distributed data management systems, namely how to create consistent
state from possibly inconsistent state.

For further information, see http://www.sdsc.edu/srb.

XML Data Integration in OGSA Grids

Carmela Comito and Domenico Talia

DEIS, University of Calabria,
Via P. Bucci 41 c,
87036 Rende, Italy

{ccomito, talia}@deis.unical.it
http://www.deis.unical.it/

Abstract. Data integration is the flexible and managed federation, anal-
ysis, and processing of data from different distributed sources. Data inte-
gration is becoming as important as data mining for exploiting the value
of large and distributed data sets that are available today. Distributed pro-
cessing infrastructures such as Grids can be used for data integration on
geographically distributed sites. This paper presents a framework for in-
tegrating heterogeneous XML data sources distributed among the nodes
of a Grid. We propose a query reformulation algorithm to combine and
query XML documents through a decentralized point-to-point mediation
process among the different data sources based on schema mappings. The
above cited XML integration formalism is exposed as a Grid Service within
the GDIS architecture. GDIS is a service-based architecture for providing
data integration in Grids using a decentralized approach. The underlying
model of such architecture is discussed and we show how it fits the XMAP
formalism/algorithm.

1 Introduction

The Grid offers new opportunities and raises new challenges in data management
arising from large scale, dynamic, autonomous, and distributed nature of data
sources. A Grid can include related data resources maintained in different syntaxes,
managed by different software systems, and accessible through different protocols
and interfaces. Due to this diversity in data resources, one of the most demanding
issue in managing data on Grids is reconciliation of data heterogeneity. Therefore,
in order to provide facilities for addressing requests over multiple heterogeneous
data sources, it is necessary to provide data integration models and mechanisms.

Data integration is the flexible and managed federation, analysis, and processing
of data from different distributed sources. In particular, the rise in availability of
web-based data sources has led new challenges in data integration systems for
obtaining decentralized, wide-scale sharing of data, preserving semantics. These
new needs in data integration systems are also felt in Grid settings. In a Grid it
is not suitable to refer to a centralized structure for coordinating all the nodes
because it can become a bottleneck and, most of all, it doesn’t benefit from the
dynamic and distributed nature of Grid resources.

The Grid community is devoting great attention toward the management of
structured and semi-structured data such as databases and XML data. The most

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 4–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

XML Data Integration in OGSA Grids 5

significant examples of such efforts are the OGSA Data Access and Integration
(OGSA-DAI) [1] and the OGSA Distributed Query Processor (OGSA-DQP) [2]
projects. However, till today only few of those projects [3,4] actually meet schema-
integration issues necessary for establishing semantic connections among hetero-
geneous data sources.

For these reasons, we propose a framework for integrating heterogeneous XML
data sources distributed over a Grid. By designing this framework, we aim at de-
veloping a decentralized network of semantically related schemas that enables the
formulation of distributed queries over heterogeneous data sources. We designed
a method to combine and query XML documents through a decentralized point-
to-point mediation process among the different data sources based on schema
mappings. We offer a decentralized service-based architecture that exposes this
XML integration formalism as a Grid Service [5]. We refer to this architecture
as the Grid Data Integration System (GDIS). The GDIS infrastructure exploits
the middleware provided by OGSA-DQP, OGSA-DAI, and Globus Toolkit 3 [6],
building on top of them schema-integration services.

The remainder of the paper is organized as follows. Section 2 presents a short
analysis of data integration systems focusing on specific issues related to Grids.
Section 3 presents the XMAP integration framework; the underlying integration
model and the XMAP query reformulation algorithm are described. Section 4
illustrates the deployment of the XMAP framework on a service-based Grid archi-
tecture. Finally, Section 5 outlines future work and draws some conclusions.

2 Data Integration and Grids

The goal of a data integration system is to combine heterogeneous data residing at
different sites by providing a unified view of this data. The two main approaches
to data integration are federated database management systems (FDBMSs) and
traditional mediator/wrapper-based integration systems.

A federated database management system (FDBMS) [7] is a collection of co-
operating but autonomous component database systems (DBSs). The DBMS of a
component DBS, or component DBMS, can be a centralized or distributed DBMS
or another FDBMS. The component DBMSs can differ in different aspects such
as data models, query languages, and transaction management capabilities.

Traditional data integration systems [8] are characterized by an architecture
based on one or more mediated schemas and a set of sources. The sources contain
the real data, while every mediated schema provides a reconciled, integrated, and
virtual view of the underlying sources. Moreover, the system includes a set of
source descriptions that provide semantic mappings between the relations in the
source schemas and the relations in the mediated schemas [9].

Data integration on Grids presents a twofold characterization:

1. data integration is a key issue for exploiting the availability of large, hetero-
geneous, distributed and highly dynamic data volumes on Grids;

2. integration formalisms can benefit from an OGSA-based Grid infrastructure,
since it facilitates dynamic discovery, allocation, access, and use of both data

6 C. Comito and D. Talia

sources and computational resources, as required to support computationally
demanding database operations such as query reformulation, compilation and
evaluation.

Data integration on Grids has to deal with unpredictable, highly dynamic data
volumes provided by unpredictable membership of nodes that happen to be par-
ticipating at any given time. So, traditional approaches to data integration, such
as FDBMS [7] and the use of mediator/wrapper middleware [9], are not suitable
in Grid settings. The federation approach is a rather rigid configuration where
resources allocation is static and optimization cannot take advantage of evolving
circumstances in the execution environment. The design of mediator/wrapper in-
tegration systems must be done globally and the coordination of mediators has
to be done centrally, which is an obstacle to the exploitation of evolving charac-
teristics of dynamic environments. As a consequence, data sources cannot change
often and significantly, otherwise they may violate the mappings to the mediated
schema.

The rise in availability of web-based data sources has led to new challenges in
data integration systems in order to obtain decentralized, wide-scale sharing of
semantically-related data. Recently, several works on data management in peer-
to-peer (P2P) systems are moving along this direction [10, 11, 12, 13]. All these
systems focus on an integration approach not based on a global schema: each peer
represents an autonomous information system, and data integration is achieved by
establishing mappings among the various peers.

To the best of our knowledge, there are only few works designed to provide
schema-integration in Grids. The most notable ones are Hyper [3] and GDMS [4].
Both systems are based on the same approach that we have used ourselves: build-
ing data integration services by extending the reference implementation of OGSA-
DAI. The Grid Data Mediation Service (GDMS) uses a wrapper/mediator ap-
proach based on a global schema. GDMS presents heterogeneous, distributed data
sources as one logical virtual data source in the form of an OGSA-DAI service.
This work is essentially different from ours as it uses a global schema. For its part,
Hyper is a framework that integrates relational data in P2P systems built on Grid
infrastructures. As in other P2P integration systems, the integration is achieved
without using any hierarchical structure for establishing mappings among the au-
tonomous peers. In that framework, the authors use a simple relational language
for expressing both the schemas and the mappings. By comparison, our integra-
tion model follows as Hyper an approach not based on a hierarchical structure,
however differently from Hyper it focuses on XML data sources and is based on
schema-mappings that associate paths in different schemas.

3 A Decentralized XML Data Integration Framework

In this section, we describe a framework meant to integrate heterogeneous XML
data sources distributed among nodes of a Grid. The primary design goal of this
framework is to develop a decentralized network of semantically related schemas
that enables the formulation of queries over heterogeneous, distributed data sources.

XML Data Integration in OGSA Grids 7

The environment is modeled as a system composed of a number of Grid nodes,
where each node can hold one or more XML databases. These nodes are connected
to each other through declarative mappings rules. The framework implements then
a method to combine and query XML documents through a decentralized point-to-
point mediation process among the different data sources. Moreover, the interface
it exposes to access and query the XML data sources is completely uniform, re-
gardless of the intrinsic complexity of the underlying system.

3.1 Integration Model

Our integration model is based on schema mappings to translate queries between
different schemas. The goal of a schema mapping is to capture structural as well
as terminological correspondences between schemas.

As mentioned before, traditional centralized architecture of data integration
systems is not suitable for highly dynamic and distributed environments such as
the Grid. Thus, we propose an approach inspired from [13] where the mapping
rules are established directly among source schemas without relying on a central
mediator or a hierarchy of mediators. In consequence, in our integration model,
there is no global schema representing all data sources in a unique data model
but a collection of local schemas (the native schema of each data source). This
way, the coordination of the various nodes is completely decentralized. Each node
is free to establish the semantic connections with the source schemas it considers
more appropriate. Therefore, to integrate a source in the system, one needs only to
provide a set of mapping rules that describes the relationships between its schema
and the other schemas it is related to.

The specification of mappings is thus flexible and scalable. Regardless of the
total number of nodes composing the system, each source schema is directly con-
nected to only a small number of other schemas. However, it remains reachable
from all other schemas that belong to its “transitive closure”. For any mapping
M, its closure is defined as the set of rules that can be derived from M by repeated
composition of schema paths. In other words, the system supports two different
kinds of mapping to connect schemas semantically: point-to-point mappings and
transitive mappings. In transitive mappings, data sources are related through one
or more “mediator schemas”. For example, if we have a source A directly connected
to a source B and B connected to C, A is connected to both B and C. Establishing
the mappings this way creates a graph of semantically related sources where each
of the sources knows its direct semantic neighbors (point-to-point mapping) and
can learn about the mappings of its neighbors (transitive mapping). Therefore,
in our integration model all nodes are equal: there is no distinction between data
sources and mediators. Each node acts both as a data source contributing data
and as a local mediator providing an uniform view over the data provided by other
nodes.

We address structural heterogeneity among XML data sources by associating
paths in different schemas. Mappings are specified as path expressions that relate
a specific element or attribute (together with its path) in the source schema to
related elements or attributes in the destination schema. The data integration

8 C. Comito and D. Talia

model we propose is indeed based on path-to-path mappings expressed in the
XPath [14] query language, assuming XML Schema as the data model for XML
sources. Specifically, this means that a path in a source is described in terms of
XPath expressions.

As a first step, we consider only a subset of the full XPath language. The
expressions of such a fragment of XPath are given by the following grammar:

q → n | . | q / q | q // q | q [q]

where ”n” is any label (node tests), ”.” denotes the ”current node”, ”/” indicates
the child axis (/) whereas ”//” the descendant axis, and ”[]” denotes a predicate.

A schema mapping is defined as a set of “formulas” that relate a pair of schemas.
More precisely, we define a mapping M over a source schema S as a set of map-
ping rules RM = {RM

1 , RM
2 , . . . RM

k }. As we perform path-to-path mappings, a
mapping rule associates paths in different schemas. Specifically, a mapping rule is
an expression of the form:

RM : {SS, PS} −→CM {SD, P+
D}, where:

– RM is the label of the rule.
– SS is the source schema with respect to which the rules are established.
– PS is a path expression in the source schema.
– SD is the target schema with respect to which the semantic connections are

established.
– PD is a path expression in the destination schema (the cardinality of this

element may be more than one).
– CM is the element denoting the cardinality of the mappings between the two

schemas. Mappings are classified as 1-1, 1-N, N-1, N-N according to the num-
ber of nodes (both elements and attributes) of the schemas involved in the
mapping relationship. Before characterizing the cardinality constraints, one
should note that the paths involved in the mappings are “terminal” paths.
By terminal paths we mean paths whose leaf nodes are terminal elements or
attributes. 1-1 mappings state that there exist an univocal correspondence
between the source element and the destination one. In 1-N mappings (one-
element to many-elements) there is a component (attribute or element) rep-
resented by one element in the source schema but by many elements in the
destination schema. In N-1 mappings (many-elements to one-element) more
than one node in the source schema corresponds to one node in the destina-
tion schema. We have chosen, for the sake of complexity, not to consider N-N
mappings (many-elements to many-elements) in this model.

The mapping rules are specified in XML documents called XMAP documents.
Each source schema in the framework is associated to an XMAP document con-
taining all the mapping rules related to it.

The structure of XMAP documents is conform to the schema shown in Figure 1.
One can notice the presence of a single sourceSchema element, and a set of Rule
elements defining the mapping rules. Rule elements have a complex structure
which specifies the paths involved in the mappings and the cardinality constraints
among them.

XML Data Integration in OGSA Grids 9

<schema targetNamespace="http://XMAP/XMAPDocument"

xmlns="http://www.w3.org/2001/XMLSchema" ?>

<element name="Mapping">

<complexType>

<sequence>

<element name="sourceSchema" type="string"

minOccurs="1" maxOccurs="1"/>

<element name="Rule" minOccurs="1">

<complexType>

<sequence>

<attribute name="Cardinality" type="string"

minOccurs="1" maxOccurs="1"/>

<element name="sourcePath" type="string" minOccurs="1"/>

<element name="destSchema" type="string"

minOccurs="1" maxOccurs="1"/>

<element name="destPath" type="string" minOccurs="1"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

</element>

</schema>

Fig. 1. XML schema for XMAP documents

3.2 A Reformulation Algorithm for XPath Queries

In this section we present an algorithm to reformulate an XPath query on the
basis of the mapping rules established for the schema over which the query is
formulated. In the following, we suppose that we have a set of XML data sources,
that each data source is compliant to an XML Schema and that, for each schema,
an XMAP document containing the mappings related to this schema is provided.

Our query processing approach exploits the semantic connections established in
the system by performing the query reformulation algorithm before executing the
query, in order to gain further knowledge. This way, when a query is posed over
the schema of a source, the system will be able to use data from any source that is
transitively connected by semantic mappings. Indeed, it will reformulate the given
query expanding and translating it into appropriate queries for each semantically
related source. Thus, the user can retrieve data from all the related sources in the
system by simply submitting a single XPath query.

Differently from many integration approaches, where the partial query results
from different sources are joined to obtain the overall query result, we allow for
partial query answering, in the sense that the response to a query is provided by
each source independently. This way, we don’t have to wait (for a period which
might be rather important) the end of the execution of all the queries in which
the original query has been reformulated.

10 C. Comito and D. Talia

As stated previously, schema mappings associate paths in different schemas, so
reformulating a query with a mapping rule means replacing its paths with the
corresponding ones. Obviously enough, this “replacement” is not just a simple
substitution, and the mapping rule establishes how and under which constraints
it is possible to do such a transformation. More precisely, the proposed algorithm
exploits path-to-path mappings and focuses on how to take advantage of schema
semantics to generate consistent translations from the source to the target by
considering the constraints and the structure of the target schema. The query
reformulation algorithm uses as input an XPath query and the mappings, and it
produces as output zero, one or more reformulated queries. We describe now in
details the logic of the algorithm. In this discussion, we use Q to denote the input
XPath query, S the source schema over which Q is formulated, M the mappings
in the system and QRi the reformulated queries produced by the algorithm.

P =/Artist/artefact/title2

P =/Artist/style1

Q=/Artist[style="Cubism"]/artefact/title

P =/Info/kind/Painter/Painting/Title,
 /Info/kind/Sculptor/artefact
2,2

P =/Info/kind/Painter/School,
 /Info/kind/Sculptor/Style
1,2

4

2

1

3

5

P

candidate set

destination set

/Artist[style="Cubism"] /artefact/title

S2

P =/Info/kind/Painter/Painting/Title,
 /Info/kind/Sculptor/artefact
2,2
*

P =/Info/kind/Painter/School,
 /Info/kind/Sculptor/Style

*
1,2 S2

*

S1
Artist
 id
 style
 Name
 artefact
 title
 category

S2
Info
 code
 first-name
 last-name
 kind
 Painter
 School
 Painting
 Title
 Sculptor
 artefact
 Style

XMAP

Q =/Info/kind/Painter[School="Cubism"]/Painting/Title
Q =/Info/kind/Sculptor[style="Cubism"]/artefact
R1
R2

Fig. 2. Example of use of the XMAP algorithm

The algorithm can be decomposed in the following stages:

1. Identifying the path expressions in Q.
An XPath query can contain one or more predicates that produce different
branching points in the tree pattern representing the query. Each of these
branches identifies a specific path in the XML data source. The paths identified
in the query are collected into a set P .

2. Looking for candidate paths in all source schemas related to S.
The goal of this stage is to find corresponding paths in all sources semantically
related to S. This means finding the path expressions corresponding to every
element Pi in P , by using the mapping information specified in the XMAP
document provided with S. More precisely, for each Pi of the query Q, the

XML Data Integration in OGSA Grids 11

algorithm looks for all corresponding paths in the schemas transitively con-
nected to S through path Pi. These paths P �

i,j are called candidate paths, and
the schema S�

j they belong to, candidate schema. In particular we define a
candidate element E�

i,j as a tuple 〈S�
j , {P �

i,j}〉, where {P �
i,j} is a set of paths

over the schema S�
j . So, for each path expression Pi ∈ P , zero, one or more

candidate elements E�
i,j are built with 0 ≤ j ≤ n (n is the number of source

schemas in the system). A candidate set E� is a set of candidate elements
{E�

1 , . . . E�
n} (with E�

j =
⋃

i E�
i,j). This stage returns as a result the set E�.

3. Pruning of candidate schemas.
The third stage of the algorithm checks for each candidate schema found in the
previous stage whether it may be used to obtain one or more reformulation of
the query Q. To this aim, the algorithm checks whether each candidate schema
has at least one candidate path for each path present in the query. Moreover,
it needs to make sure that none of these candidate paths has already been
used to rewrite Q in order to avoid considering redundant paths. The schemas
that meet both these conditions are the only ones that we will be considered
to obtain reformulated queries, we call them destination schemas. We define a
destination element E�

i,j as a tuple 〈S�
j , {P �

i,j}〉, where {P �
i,j} is a set of paths

over the schema S�
j . So, for each path expression Pi in P , zero, one or more

candidate elements E�
i,j are built where 0 ≤ j ≤ |E�|. A destination set E� is a

set of destination elements {E�
1 , . . . E�

n} (with E�
j =

⋃
i E�

i,j). Thus, this stage
returns as a result the set E�.

4. Constructing reformulated queries.
In this stage, given the set E�, the algorithm produces one or more XPath
queries over each schema in the set. More precisely, for each destination schema
S�

j in E� the following steps are performed:

– Assessing cardinality constraints. If each path Pi in P has a single cor-
respondent path P �

i,j in the schema S�
j , all the mapping rules between S

and S�
j will be of kind 1-1 or N-1. Thus, the output of the reformulation

will be a single query expressed over the destination schema S�
j . At the

opposite, if there exists (at least) one path in P that has more than one
destination path over the schema S�

j (1-N mapping), there will be more
than one reformulated query over the schema S�

j . The number of refor-
mulated queries depends on the possible path combinations. If k is the
cardinality of the set P , |P|, the number com of possible distinct path
combinations for S�

j , is equal to the product of the cardinality of each
path P �

i,j , com = |P �
1,j | × |P �

2,j | × · · · × |P �
k,j |.

– Checking Join conditions. Once the cardinality of the mapping has been
established, and before actually producing the query, one needs to check
the join conditions between the paths P �

i,j(1 ≤ i ≤ |P|) of the destination
schema S�

j . In the 1-1 and N-1 mapping cases, since there will be a single
reformulated query, it will not be possible to reformulate the query with
respect to the schema S�

j if there exist at least two paths for which join
conditions are not respected. Finally, in the 1-N mapping case, there will
be as many reformulated queries as there exist satisfied join conditions
among the paths of each combination.

12 C. Comito and D. Talia

– Composing XPath Queries. Once the join conditions between the destina-
tion paths have been checked, the actual production of one or more XPath
queries is initiated. These queries are the product of the reformulation of
the query Q in the destination schema S�

j .
5. Recursive invocation of the algorithm.

The algorithm is recursively invoked over the reformulated queries in order to
produce the queries corresponding to every transitive mappings.

In Figure 2 is described an example of use of the XMAP algorithm. Here a
query Q is formulated over the schema S1. In the first step the algorithm identifies
the paths P1 and P2 in Q and produces as output the set P . Next, exploiting the
XMAP document associated to the schema S1, the algorithm finds two mapping
rules connecting S1 to S2 trough the paths P1 and P2. More precisely, one of these
rules relates P1 to two paths in S2, respectively /Info/kind/Painter/School and
/Info/Kind/Sculptor/Artefact. Similarly, the other mapping rules relates P2

to /Info/Kind/Painter/Painting/Title and /Info/Kind/Sculptor/artefact.
So, the second step of the algorithm produces as output a candidate set composed
of the elements P �

i,j and the (candidate) schema S�
2 . In the considered example

as the schema S�
2 has correspondences for both paths P1 and P2, it is identified

as a destination schema (step 3), so it can be used to reformulate the query Q.
In particular, the algorithm produces two reformulations of the query Q over the
schema S2, respectively QR1 and QR2 .

In Figure 3 is shown the pseudo-code of the XMAP reformulation algorithm.

Algorithm QueryReformulation
Input: query Q, schema S, mapping M (M is the XMAP of S)
Output: set of reformulated queries Q�

begin
P ← IdentifyPath(Q);
for each path Pi ∈ P do

E� ← FindCandidatePath(Pi, M);
E� ← PruningSchema(E�);
for each S�

j ∈ E� do
if (Mapping1-N(S, S�

j)) then
Q� ← CombinePaths(E�

i,j);
for each candidate query Q� ∈ Q� do

if (VerifyJoinCondition(Q�)) then
Q� ← ConstructQuery(Q�);
Qrec ← QueryReformulation(Q�, S�

j , XMAP(S�
j));

if (|Qrec| > 0) then
Q� ← Q� ∪ Qrec;

Q� ← Q� ∪ Q�;
else

if (VerifyJoinCondition(E�
i,j)) then

Q� ← ConstructQuery(Q�);
Qrec ← QueryReformulation(Q�, S�

j , XMAP(S�
j));

if (|Qrec| > 0) then
Q� ← Q� ∪ Qrec;

Q� ← Q� ∪ Q�;
return Q�

end

Fig. 3. Pseudo-code of the XMAP reformulation algorithm

XML Data Integration in OGSA Grids 13

4 The Grid Data Integration System (GDIS)

In this section, we describe the deployment and usage of the XMAP reformulation
algorithm in the Grid Data Integration System (GDIS). GDIS is a decentralized
service-based data integration architecture for Grid databases; it has been pre-
sented in a previous work [15]. The main purpose of this system is the reconciliation
of data sources heterogeneity.

In order to gather the challenges required to address data heterogeneity among
Grid-enabled databases, the GDIS architecture is characterized by the features
sketched below. GDIS adopts a decentralized approach that can effectively ex-
ploit the available Grid resources and their dynamic allocation. Moreover, schema
mapping in GDIS is conveniently done to take advantage of Grid flexibility and
dynamic nature, so allowing a wide-scale, ad hoc-nature data sharing. Finally, as
the Grid aims at realizing the sharing and cooperation of resources among virtual
organizations, when queries are posed using a node schema, answers should come
from anywhere in the system. GDIS supports these issues by adopting the XMAP
integration formalism and also implementing the XMAP query reformulation al-
gorithm described in the previous section.

The GDIS system offers a wrapper/mediator-based approach to integrate data
sources: it adopts the XMAP decentralized mediator approach to handle semantic
heterogeneity over data sources, whereas syntactic heterogeneity is hidden behind
ad-hoc wrappers. In the GDIS architecture (see [15] and Figure 4), the query
reformulation engine is run by the data integration nodes. Specifically, these nodes
offer: (i) a set of data integration utilities allowing to establish mappings, and (ii)
the query reformulation algorithm introduced by the XMAP integration formalism.
These utilities are exposed through the “portTypes” of the proposed OGSA-GDI
data integration service.

Client

GUI

Data
Integration

OGSA-GDI

Data
Integration

OGSA-GDI

Query
Execution

OGSA-DQP
GQES

Wrapper

OGSA-DAI

Data
Provider Mediator

Query
Execution

OGSA-DQP
GQES

Query
Processing

OGSA-DQP
GDQS 1

11

9

2

9

4

5

6

7

5

8

3

SCHEMAS
DB

SCHEMAS

8 4

10

Fig. 4. GDIS functional architecture

14 C. Comito and D. Talia

GDIS is designed as a service-based distributed architecture where each node
exposes all its resources as Grid services except data resources and data integration
facility that are exposed as Grid Data Services (GDSs) [16]. In so doing, the GDIS
system introduces the OGSA-based Grid Data Integration (GDI) service that ex-
tends OGSA-DAI and OGSA-DQP portTypes with additional functionality both
to enable users to specify semantic mappings (in the form of XMAP documents)
among a set of data sources, and to execute the XMAP query rewriting algorithm.
Among the portTypes introduced by GDI, two are pertinent to XMAP:
– the Manual Mappings Composition portType, through which a client manually

builds schema mappings stored in the form of an XMAP document as Service
Data Elements (SDE);

– the Query Reformulation Algorithm (QRA) portType, that performs the
XMAP query reformulation algorithm and receives as input a query and the
schema mappings and produces as output a set of reformulated queries. The
reformulated queries will be forwarded to the Grid Data Service portType
offered by the OGSA-DQP distributed query service (GDQS).

Typical interactions in the system are those that take place when the two follow-
ing activities are performed: (i) adding new resources to the system, (ii) submitting
a query with consequent execution. Naturally, XMAP mostly comes to play in the
latter case. More precisely, when the client formulates a query, it sends it to a
reformulation engine through the QRA portType of the GDI service (Interaction
(1) in Figure 4). The QRA portType implements the reformulation operation that
executes the XMAP reformulation algorithm receiving as input the query, in the
form of an XML document, and importing the mappings established in the system
via the importMappings operation provided by the Import Mappings portType of
the GDI service (Interaction (2)). Reformulated queries are then transmitted, in
the form of an XML document, to the GDQS service via the perform operation of
the GDS portType (Interaction (3)). The next interactions (4-9) are the same as
those of a typical OGSA-DQP execution.

5 Conclusions

Data management in Grid is as important as high performance computing. Data
Integration is a key issue for exploiting the availability of large, heterogeneous,
distributed data volumes in Grids. Integration formalisms demand significant ad-
vances in middleware for sharing data from diverse distributed sources. So, they
can benefit from an OGSA-based Grid infrastructure, since it facilitates dynamic
discovery, allocation, access, and use of both data sources and computational re-
sources. For these reasons we designed a framework for integrating heterogeneous
XML data sources distributed among nodes of a Grid. We propose a query refor-
mulation algorithm to combine and query XML documents through a decentralized
point-to-point mediation based on schema mappings. Moreover, this XML integra-
tion formalism is exposed as a Grid Service within the GDIS architecture. GDIS is
a service-based architecture for providing data integration in Grids using a decen-
tralized approach. The underlying model of such architecture is discussed and we
showed how it fits the XMAP formalism/algorithm. Software prototypes of both

XML Data Integration in OGSA Grids 15

the XMAP algorithm and the GDIS system are currently being developed, using
the Globus Toolkit 3, and OGSA-DAI and OGSA-DQP services.

Acknowledgements

This work has been partially supported by the FP6 Network of Excellence Core-
GRID (Contract IST-2002-004265).

References

1. Antonioletti, M., et al.: OGSA-DAI: Two years on. In: Global Grid Forum 10 —
Data Area Workshop. (2004)

2. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Watson, P., Fernandes,
A.A.A., Fitzgerald, D.J.: OGSA-DQP: A service for distributed querying on the grid.
In: EDBT. (2004) 858–861

3. Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R., Vetere, G.: Hyper: A frame-
work for peer-to-peer data integration on grids. In: ICSNW. (2004) 144–157

4. Brezany, P., Woehrer, A., Tjoa, A.M.: Novel mediator architectures for grid infor-
mation systems. FGCS - Grid Computing: Theory, Methods and Applications. 21
(2005) 107–114

5. Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The physiology of the grid: An
open grid services architecture for distributed systems integration. Open Grid Service
Infrastructure WG, Global Grid Forum (2002) http://www.globus.org/research/

. papers/ogsa.pdf.
6. Sandholm, T., Gawor, J.: Globus toolkit 3 core — A grid service container framework.

Globus Toolkit Core White Paper (2003) http://www-unix.globus.org/toolkit/

3.0/ogsa/docs/gt3_core.pdf.
7. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Computing Surveys 22 (1990)
183–236

8. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS. (2002) 233–246
9. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information sources

using source descriptions. In: VLDB. (1996) 251–262
10. Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A., Mylopoulos, J., Serafini, L.,

Zaihrayeu, I.: Data management for peer-to-peer computing : A vision. In: WebDB.
(2002) 89–94

11. Calvanese, D., Damaggio, E., Giacomo, G.D., Lenzerini, M., Rosati, R.: Semantic
data integration in P2P systems. In: DBISP2P. (2003) 77–90

12. Franconi, E., Kuper, G.M., Lopatenko, A., Serafini, L.: A robust logical and com-
putational characterisation of peer-to-peer database systems. In: DBISP2P. (2003)
64–76

13. Halevy, A.Y., Suciu, D., Tatarinov, I., Ives, Z.G.: Schema mediation in peer data
management systems. In: ICDE. (2003) 505–516

14. Clark, J., DeRose, S.: XML path language (XPath) version 1.0. W3C Recommen-
dation (1999) http://www.w3.org/TR/xpath.

15. Comito, C., Talia, D.: GDIS: A service-based architecture for data integration on
grids. In: GADA. (2004) 88–98

16. Foster, I., Tuecke, S., Unger, J.: OGSA data services. DAIS-WG Informational Draft,
9th Global Grid Forum (2003)

Towards Dynamic Information Integration

Jürgen Göres

University of Kaiserslautern, Heterogeneous Information Systems Group
goeres@informatik.uni-kl.de

Abstract. To utilize the full potential of structured or semi-structured
data stored across different information systems, users and applications
must not be confronted directly with the individual, heterogeneous data
sources, but instead be supplied with a customized integrated view on the
data. Traditional information integration is relying on a human-driven
process to accomplish this task. While feasible in static, closed-world sce-
narios, this approach fails in settings like the nascent data grids, which
are characterized by a large, permanently changing set of autonomous
data sources. We describe the end-to-end integration approach underly-
ing our PALADIN project which aims to reduce and ultimately eliminate
the dependency on human experts in the integration process in order to
provide fast and cost-effective integration services for these dynamic en-
vironments.

1 Introduction

Grid technology aims to provide distributed, potentially global access to com-
puting resources by providing a layer of middleware that abstracts not only from
location but ultimately also from the inevitable heterogeneity of these resources.
Originating in the area of high performance computing, grids initially focused
on the use of CPU and memory resources. In these computing grids, the transfer
of data is inherently file-based, as it was initially understood only as part of
the general infrastructure to pass job executables, input data and results be-
tween grid nodes. The good reliability and performance characteristics of this
infrastructure led to the adoption of grid technology as a means to provide a
large distributed storage space for data-intensive research projects like particle
physics. While they are often called data grids by their users, we will refer to
them as storage grids, as their very nature is still just that of a large container
for bulk data stored in files, which – from the perspective of the grid – have no
discernable structure. Given the massive amounts of raw data these distributed
file systems have to deal with, the focus of research and development is on per-
formance and replication aspects.

Today, the understanding of the term data grid is moving away from this file-
centric virtual hard disk, towards a grid where preexisting structured or semi-
structured data stored in databases is the resource of interest. Thousands of
publicly available databases already exist, for example, in areas like life sciences
and space observation. However, access to these sources is far from being uniform,

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 16–29, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Dynamic Information Integration 17

based on proprietary interfaces. Beyond these technical barriers, users are faced
with different data models, each offering many degrees of design freedom that
result in schemas with largely differing structures even when modelling the same
real-world concepts. To make things worse, the vocabulary used to describe these
concepts is inconsistent even in comparably narrow fields of interest.

Current development in standardization bodies like the Data Access and In-
tegration working group of the GGF focuses on defining interfaces that abstract
from technical heterogeneity by building on the well-established web service
technology. However, plain access is not sufficient to effectively use data coming
from different data sources available on a future data grid, but only represents a
necessary first step in the development of database grids. To truly benefit from
publicly available data sources, users and applications require a transparent,
integrated view on the distributed data sources that abstracts not only from
different hardware, operating systems, protocols and interfaces, but also from
the logical and semantical heterogeneity among the schemas of these sources.

Providing such an integrated view requires a mapping from the data source
schemas to the integrated schema that adapts the different data models and
structures as well as the diverging uses and understandings of terms in these
schemas. In conventional integration scenarios, which deal with fixed require-
ments and a relatively stable set of data sources under a single administrative
control, this mapping is developed in a human-driven process, involving experts
both of information integration and of the respective application domain. We
argue that while existing approaches to information integration are appropriate
under these static circumstances, they are unsuitable for the ad hoc nature of
cooperation and the high degree of autonomy of the data sources in a grid envi-
ronment, due to their heavy reliance on human expertise and the resulting cost
and delay.

In this paper, we describe an end-to-end process to automate information
integration that is customized to the dynamic nature of data grids. We start
with the analysis of the user requirements for the desired integrated database,
followed by the discovery of data sources that can contribute. Next, a mapping
is created between these sources’ schemas and the integrated schema, which is
then deployed in a runtime environment.

This process serves as blueprint for our current research project PALADIN
(Pattern-based Approach to LArge-scale Dynamic INformation integration). We
describe the basic elements of PALADIN’s infrastructure as well as two central
concepts we use to augment and ultimately replace human expertise in the in-
tegration process: Domain schemas, essentially data-centric ontologies, provide
machine-processable domain knowledge by describing the concepts of a given ap-
plication domain and their relationships. Integration patterns are used to declar-
atively describe common problem constellations encountered when mapping be-
tween heterogeneous schemas and to specify an approach to their solution, which
can then be adapted and applied to the concrete problem.

The remainder of this paper is structured as follows: Section 2 discusses related
work. Section 3 gives a short overview of the five conceptual phases of information

18 J. Göres

integration and identifies and describes the essential elements of the PALADIN
infrastructure. Section 4 elaborates on each phase in more detail and introduces
the concept of integration patterns, which provide the necessary knowledge for
the creation of integration plans. Section 5 concludes with a summary and an
outlook on future work.

2 Related Work

Foster et al. [1] propose the concept of virtual organizations, new forms of short-
to medium-term cooperations, which are formed by companies or research in-
stitutes to pool computing resources in order to pursue a common goal. The
authors explicitly mention data itself as a key resource, which makes virtual
organizations a prime beneficiary of dynamic information integration.

Building on a stateful extension of the ubiquitous web services technology, the
Global Grid Forum (GGF) is currently standardizing interfaces, architecture and
protocols to consolidate different grid projects. Building on this basic infrastruc-
ture, the Data Access and Integration working group (DAIS) [2] is specifying
interfaces that allow access to data and metadata of data sources with different
data models. While still under development, these interfaces will provide a start-
ing point for our proposed integration solution by abstracting from the technical
heterogeneity of different data sources based on the same data model. In con-
junction with the general grid infrastructure standard interfaces allow us to focus
on the logical and semantical heterogeneity specific to information integration.

A number of projects deal with the mapping between data models, most no-
tably between the relational and the XML world. For example, [3] presents two
algorithms that create an XML schema from a given relational schema, while
[4] describes an approach for the inverse direction. While such algorithms excel
in certain situations, they do not produce good results under all circumstances.
Another major limitation is the lack of a generally accepted mapping language
or operator algebra that can handle XML and SQL alike. Therefore, most algo-
rithms only produce a schema definition in the desired target data model, but
do not provide an actual mapping specification that translates the data between
the source and target schema, e.g., a view definition that uses SQL/XML. Those
that do are generally aimed at a specific runtime environment, like one of the
various XML extensions provided by RDBMS vendors.

To solve schematic heterogeneity, it is often necessary to transform infor-
mation that is modelled as data in one schema and as metadata in the other,
which goes beyond the capabilities of most existing query languages and alge-
bras. While XQuery provides sufficient expressiveness for the XML data model,
even the latest incarnations of the SQL standard have nothing to offer in this
department. SchemaSQL [5] is an extension of SQL that uses an augmented
FROM clause to operate not only on table rows but also on the tables of a schema
or the attributes of a single table. While significantly improving the expressive
power of standard SQL, it only facilitates the manual definition of schematic
mappings and is not supported by any commercial DBMS.

Towards Dynamic Information Integration 19

An essential aspect to resolving semantic heterogeneity is the discovery of
correspondencies between schema elements of different data sources. While this
schema matching is traditionally done manually by application domain experts,
different approaches to semi-automatic schema matching have been proposed
(see [6]). The most promising approaches like Cupid [7] combine a large number
of techniques from various areas like information retrieval or artificial intelli-
gence into so-called hybrid matchers. These matchers, however, are monolithic,
which limits their flexibility when it comes to supporting new data models or
adding new matching techniques. In addition, although existing matchers yield
respectable results, their general quality is insufficient to solely depend on them
for automated integration. Current state of the art can only identify matches as
a starting point for the user, who then must be provided with an interface (like
the Clio matching tool presented in [8]) to review, correct and amend the results
of automatic matching.

As presented by Halevy [9], the definition of mappings from the data sources
to the integrated schema can be understood as a variant of the problem of
answering queries using views. The work presented there is however limited to
the Datalog data model, while our approach can support arbitrary data models.

McBrien and Poulovassilis [10] also use a graph-oriented data model to repre-
sent schemas of arbitrary data models. However, they use a fixed set of atomic
graph transformations, which, given a mapping from a schema A to another
schema B, allows them to automatically derive an inverse mapping or repair an
existing mapping during schema evolution [11].

3 Conceptual Process and Infrastructure

Information integration can roughly be structured into five distinct phases as
shown in figure 1:

Deployment
Data

Sources

Planning
Require-
ments

Discovery
(choose HW/SW)
transform plan

Integration
Plan

Analysis Runtime
Deployed
System system in usedetect and resolve

heterogeneity
determine
requirements

find suitable
data sources

changing
data sources

changing
requirements

Fig. 1. Phases of Information Integration

Initially, the requirements on the virtual integrated data source are deter-
mined, i.e., the desired data model and schema (analysis phase). Based on these
results, the set of available data sources is analyzed to discover those that can
contribute to the integrated schema (discovery phase). With the target and
source schemas as input, the planning phase has to determine a mapping def-
inition that translates the data model, structure and vocabulary of the source
schemas into those defined by the target schema. This mapping or integration

20 J. Göres

plan, which is still independent of a particular runtime platform, is then deployed
to a runtime environment (deployment phase), after which the integrated sys-
tem is ready for use (runtime phase). Joining or leaving data sources will trigger
a (possibly partial) repetition of the process starting with the discovery phase,
while changing user or application requirements will trigger a restart beginning
with the analysis.

While each phase has individual characteristics, certain concepts and a basic
infrastructure are relevant throughout the entire process: A unified metamodel,
which extends the concepts and terminology of CWM [12], facilitates the han-
dling of arbitrary data models. A flexible schema matching framework is used
to resolve semantic discrepancies between different schemas, augmented by ex-
ternal application domain knowledge provided in a machine-processable way as
domain schemas.

3.1 Unified Metamodel

The individual data sources on a data grid use one of a large number of possible
data models, each having its own concepts, modelling techniques and notations.
Even within a data model, representations are far from being uniform due to
different vendor implementations or meta languages. While SQL and XML are
the dominating technologies of the day, a large share of the worlds data is still
stored in legacy systems with proprietary data models. Information integration
in the grid can therefore not limit itself to a fixed set of supported data models,
but rather needs a method to uniformly handle arbitrary schemas and any new
data model. An existing approach for extensible, integrated metadata handling
is OMG’s Common Warehouse Metamodel [12]. Being a reference metamodel
and no actual implementation, it specifies a stack of four distinct meta layers
M0 to M3. Models on a layer Mi are described by instantiating the elements of
the layer Mi+1 above and can themselves be instantiated to create objects on
the layer Mi−1 below. On the topmost layer M3 the Meta Object Facility (MOF)
serves as a meta-metamodel to specify arbitrary metamodels. Using the MOF,
the CWM specification provides predefined metamodels (M2) for SQL, XML,
the UML object model and many others. On the M1 layer, these metamodels
are instantiated to create actual schemas or models. The data stored in these
schemas finally resides on the M0 or data layer.

While the CWM’s principal concept is sound, it has several drawbacks that
impede its use for data and metadata in PALADIN. Besides it overwhelming
complexity, which makes implementation and use difficult, the current specifi-
cation is outdated. For example, the XML metamodel is based on the rather
limited expressiveness of DTDs. While this can be easily remedied by using the
MOF, the most severe limitation is the lack of a proper data layer. Designed
for the handling of metadata only, the CWM provides only a makeshift instance
metamodel for sample data. Being a metamodel, it not only violates CWM’s
own concept of a stack of meta layers, but inevitably results in an unnatural
and cumbersome data representation. As a proper M0 layer representation is a

Towards Dynamic Information Integration 21

central aspect of the integration patterns described in section 4.2, this major
drawback in itself advocates the redesign of a unified metamodel.

The current prototype PALADIN metamodel (PMM) is a simplified Java-
based implementation of the CWM that uses code generation to simulate the
multiple levels of instantiation. Like CWM, we use an abstract core metamodel
whose classes are extended by concrete metamodel classes in order to capture
common properties. We provide definitions and import filters for the core parts of
the standard SQL:1999 metamodel as well as for XML. Two other metamodels,
Match and Domain Schema are briefly discussed in the following sections.

3.2 Schema Matching

While existing schema matching techniques show promising results, the indi-
vidual matchers only cover a small subset of possible approaches to find corre-
spondencies between or possibly within schemas. Existing hybrid matchers are
monolithic, i.e., they provide a number of matching concepts and ideas hard-
wired into a single algorithm, which makes extension with new and reuse of
existing concepts difficult. We are therefore developing an extensible schema
matching framework that captures individual approaches as components, which
can then be wired together in an arbitrary fashion. Preprocessing components
like stemming mechanisms or dictionary and thesaurus lookup operate on the
labels of the schema elements. Structural matchers, for example, a variant of the
Cupid algorithm, can aggregate correspondencies between individual elements.
To combine the results of different matching approaches into a final result, we
currently explore different composite matchers. With the flexibility given by this
framework, we can improve over the quality of existing individual matchers. To
store the results of the matching process, we have defined a Match metamodel.
Besides generic matches that indicate 1:1, 1:n and n:m correspondencies between
schema elements, we provide matches with more specific semantics, e.g., a sub-
or superclass relationship, partial or incomplete union.

3.3 Domain Schemas

Domain knowledge is a key factor in providing a correct mapping from a given set
of data sources into a consistent integrated data source that meets user require-
ments. Schema matching can help to identify correspondencies between schemas,
but is not able to provide external knowledge about the application domain that
is missing from the schemas. To substitute the human experts in classical in-
tegration scenarios, we use domain schemas to capture a domain’s terms and
concepts and their relationships in a machine-understandable way, to serve as a
reference during information integration. In PMM, domain schemas are repre-
sented in a dedicated object-oriented metamodel. A domain schema’s backbone
is the directed acyclic graph (DAG) formed by the (multiple-)inheritance hierar-
chy between its classes, providing a natural broader/narrower-term relationship
which can be used both as a thesaurus and as a means to address subdomains
with path expressions. By allowing each concept to have several labels in multi-
ple languages, domain schemas can also serve as a dictionary and for synonym

22 J. Göres

lookup. Additional relationships and attributes can be used to add further in-
formation, like hints to potential references (e.g., foreign keys that were not
explicitly defined in a schema) and strong or weak candidate keys.

4 Integration Phases

Building on the PALADIN infrastructure, the following sections describe how
each of the five conceptual phases of information integration has to be imple-
mented in order to be applicable to the dynamic nature of the grid environment.
We focus on the pivotal integration planning phase, where we elaborate on the
concept of integration patterns.

4.1 Analysis and Discovery

In a traditional integrated system, the user is provided with a fixed, predefined
integrated schema in a given data model. In the light of a large number of grid
users with individual and changing requirements, a query system on a data grid
has to discard this rigid assumption. Instead the user or application developer
specifies a schema in a common data definition language, thereby establishing the
desired target data model. While this explicit target schema definition is suitable
if a precise target schema has already been designed, the dynamic nature of the
grid makes an ad-hoc-querying functionality desirable to explore the available
data: The user writes a query using a data modelling language of the favored
target data model, and by using terms for table, element or attribute names, etc.,
he implicitly defines the query’s underlying schema. A few minor restrictions,
like enforcing the use of correlation names in an SQL query, allow the inference
of a basic target schema. While certainly useful for surveying available data,
this ad hoc mode will generally not deliver consistent results for a sequence of
queries, as each of them usually only touches a few topics of the application
domain. Therefore, the implicit schemas of the different queries will likely yield
different data sources during discovery. As an alternative to schema inference
on the basis of individual queries, we propose a schema-by-example approach:
The user issues several queries, which are then aggregated into a single target
schema. The target schema is represented in the PMM.

In addition to determining the target schema, the desired quality of service
(QoS) can be specified either implicitly, by assuming reasonable defaults de-
pending on the method used to obtain the target schema, or explicitly with a
QoS definition language. QoS can include aspects like a source’s trustworthiness,
costs or availability.

With the target schema defined in the vocabulary of the user or program-
mer, sources that can contribute data and meet the QoS requirements have to
be discovered. To determine usable data sources, each source’s schema can be
retrieved, matched with the target schema and those that do not show any corre-
spondencies can be discarded. While this is practicable in small-world scenarios
with a limited number of fixed data sources, it is infeasible in a global data grid
with an ever growing set of data sources.

Towards Dynamic Information Integration 23

To reduce the set of data sources that have to be analyzed in detail, sources
are cataloged in grid resource directories on the basis of application domains,
by using the unique identifiers of the respective domain schemas that fully or
partially overlap the sources’ schemas. As domains can be large, path expressions
on the class hierarchy (or the directed acyclic graph resulting from multiple
inheritance) of a domain schema can be used to further narrow down a source’s
topics. Still the remaining candidate sources can be numerous.

To further speed up the selection, indirect schema matching can be performed
as shown in figure 2: Initially (a), each source schema and the target schema are
matched against the relevant domain schema(s).

Domain Schema

Target Schema

Source 1
Schema

Source 2
Schema

≡ ||

≡ ≡

∪

⊃

≡
≡

≡

≡

∪

≡

Source 1
Schema

Source 2
Schema

|| ∪

≡

Target Schema

≡

⊃
∪

?

≡

≡ ≡

(a) (b)

Fig. 2. Indirect Schema Matching

By using the domain schemas as a reference and assuming transitivity for
matches, direct matches between the schemas can now be inferred (b). The
number of match processes for n schemas and d relevant domains is effectively
reduced from O(n2) required for the pairwise matching of all schemas to O(n ·d),
as each (source or target) schema now has to be matched against the relevant
domain schemas only. The number of relevant domains d depends on the scope
of the target schema and is usually comparably small, so this reduction already
represents a significant improvement. However, the greatest gain results from
the fact that domain schemas can be considered relatively stable. Therefore,
correspondencies between the data source schemas and those domain schemas
relevant to the individual source do not have to be determined during the discov-
ery process, but can instead be identified in advance by the data source provider.
This allows to invest more time and effort to discover these matches, making the
use of more elaborate manual or semi-automatical schema matching approaches
possible. So effectively all that remains to be done during the discovery phase is
for the user or the system to choose a set of domain schemas that are relevant
for the target schema and match these with it, further reducing the number of
schema matches to O(d).

24 J. Göres

As the results of this indirect schema matching can produce overly optimistic
correspondencies between the schemas, the best-matching sources can optionally
be matched directly with the target schema to remove uncertainties introduced
by the indirection, using the indirect matches as starting point.

4.2 Integration Planning

With the set of candidate sources and the target schema, the integration planning
phase can commence, i.e., the definition of a mapping that transforms the data
found in the source schemas into the terms and structure of the target schema.
This phase is particularly reliant on humans. With their application expertise
they can understand the precise semantics hidden in the structure of the differ-
ent schemas and then use their experience to define the appropriate mappings.
In order to reduce this reliance, a method is needed to capture human expertise
and experience and provide it to an integration planning system in a reusable
and machine-processable way. One could apply the idea of case-based reason-
ing (CBR) to information integration. CBR systems rely on a large number of
cases, each describing a concrete problem with its associated solution. When
confronted with a new problem, these systems try to find the case that most
closely resembles the new problem scenario and then try to adapt its solution
to this new problem. However, both the identification of the most suitable case
and its customization can be difficult, especially when cases describe situations
that are more complex than plain attribute-value vectors.

Our concept of integration patterns follows a different approach: A pattern
describes a common problem situation in a generic way and provides a guideline
to resolve it, which can be adapted to each specific situation. A straightforward
representation of a pattern is an algorithm that searches the set of schemas for
the problem situation the pattern can solve. Once this situation is identified,
the algorithm can then apply the solution, i.e., modify the affected parts of the
schema(s) and create a description of how to transform the data found in the
original schema structure. However, such an imperative description of patterns
makes their development, maintenance and extension difficult and also makes
them dependent on a specific implementation of the uniform metamodel. So,
in order to allow an easy extension of the library of available patterns without
programming effort, a declarative notation has to be provided.

Such a language has to offer sufficient expressiveness to describe all kinds of
structural, schematic and data model transformations. While a number of ex-
isting languages come into consideration, each has its limitations: SQL views
can transform relational schemas and data and in conjunction with extensions
like SQL/XML they can also transform relational data to XML. However, the
inverse transformation is not possible, and SQL is unable to bridge the gap
between data and metadata (i.e. resolve schematic heterogeneity). Approaches
like SchemaSQL remedy this situation, but are still limited to the relational data
model. XQuery offers sufficient expressiveness to turn data to metadata and vice
versa, but is limited to the XML realm alone. So we might be tempted to define

Towards Dynamic Information Integration 25

yet another bloated SQL-like language, with the severe drawback that every new
metamodel we add will also likely require new language constructs.

A natural alternative is viewing both metadata and data described with the
PALADIN metamodel as a typed, attributed multigraph. That way, we can de-
scribe patterns as transformations of the PMM graphs. Graph transformation is
a well-explored concept (see [13]). To represent integration patterns, we chose an
approach that is based on the semi-graphical language defined for the PROGRES
graph replacement system [14]. While the graphical elements provide an easily
readable, yet semantically precise description of the most relevant aspects of a
pattern, the textual notation adds expressiveness that would be hard to capture
graphically. A graph transformation is described using production rules. A pro-
duction rule has a left-hand side (LHS) that describes the situation it can be
applied to as an abstract subgraph, and a right-hand side (RHS) that describes
the result of the rule’s application. To connect left- and right-hand side, every
element that should be preserved by the pattern is bound to a variable. An el-
ement that is not repeated on the RHS indicates a deletion, an element that is
new on the RHS indicates the creation of an element.

Every integration pattern is represented by two interdependent production
rules (facets). Figure 3 shows the (simplified) pattern denormalize that de-
scribes the necessary operations on two tables of two source schemas whose con-
tents need to be joined into a single table of the target schema. More patterns
and examples of their use are presented in [15].

The first facet denormalize().m1 operates on the M1 or model layer. Its
LHS describes the constellation that has to be encountered in the schema graph
in order for the pattern to be applicable. The LHS also assigns identifiers to
relevant schema elements, which the RHS and the M0 facet can refer to later.
To use the denormalize pattern, there have to be two source schemas (labeled s1
and s2) that each have a table t1 and t2. Both tables must have a set of columns
(t1rc and t2rc) which represent a reference r between the tables. This reference
might have been identified during schema matching. Each table can optionally
(indicated by the dotted lines) have further columns (t1oc, t2oc) which are not
involved in the reference. If such a situation is encountered, the pattern can be
applied, with the results described using the RHS of the M1 facet: A new table t3
is attached to schema s1 and takes ownership of all columns of the tables t1 and
t2, except the t2rc columns, which – being redundant after the join operation –
are deleted, as are the two original tables. The schema s2, however, is repeated
on the RHS and is thus preserved, as it might still contain other tables or views.
All edges to a node in a pattern that are not explicitly mentioned on its LHS
(context edges) are preserved if the node itself is preserved, otherwise they are
deleted. Alternatively, the diamond symbol can be used to redirect context edges
of deleted nodes. This is used in the example to indicate that all edges to the
deleted t1, t2 and t2rc nodes are redirected to t3 and t1rc respectively.

To define the effects on the data stored in the schema elements, the second
facet on the M0 layer references the instances of the schema elements in the
M1 facet using the identifiers defined there. In the example, the LHS describes

26 J. Göres

owner

t1rc:Column

t1:Table
owner

t2rc:Column

t2:Table

r:Referencesource target

t2oc:Column

s1:SQLSchemapart_of
part_of

::=

ownerowner

Condition for each c,d in C:,D: c==d
}

::=

}
Pattern denormalise().m0 {

Pattern denormalise().m1 {

owner

t3:Table
label=t1.label+"_"+t2.label

t1, t2

tu1:t1

a1o:t1oc

a1r:t1rc

tu2:t2

a2o:t2oc

a2r:t2rc

a1o:t1oc

:t1a1r:t1rc

a2o:t2ocA B

C D

t1oc:Column t2oc:Columnt1oc:Column

t1rc:Column

owner

owner

t2rc

s1:SQLSchemapart_of

s2:SQLSchema

s2:SQLSchema

:t3

owner

C

BA

Fig. 3. An integration pattern expressed as a graph transformation

the tuples tu1 and tu2 of the tables t1 and t2 with their respective attributes
(a1o, a1r, a2o, a2r) and the literal values of these attributes (A to D). The
RHS uses these elements to construct a result tuple of the newly created table
t3, by attaching the attributes a1o, a2o and a1r with their respective literals to
the new t3 tuple. The textual notation is used to express an equi-join, i.e., only
those pairs of tuples tu1 and tu2 of the LHS are transformed into a t3 tuple,
whose values for the a1r and a2r attributes are pairwise equal.

While this simplified example pattern does not go beyond the capabilities of
a relational view definition, the expressiveness of graph transformation allows
the definition of arbitrary operators that have no equivalent in existing query
languages or operator algebras, like the transformation of metadata to data and
vice versa, or transformation between different data models [15].

To find out which patterns are appropriate for an integration problem, i.e., a
set of source schemas and a target schema, a graph replacement system tries to
find matches of the LHSs of the patterns’ M1 facets. If the problem is found in
the graph representing the source schemas, the suggested solution of the RHS is
compared to the target schema. If the similarity to the target schema is higher
than before, the pattern becomes a possible candidate. If more than one pat-
tern matches in a given situation, the increase in similarity can be used for
a simple greedy heuristic to choose the pattern that is applied first. The pro-
cess is repeated on the resulting intermediate schema graph, until either the
target schema or a dead-end is reached. In the latter case, backtracking is per-
formed. To reduce the complexity of pattern search, an index based on the type
of nodes can be used to limit the search to promising regions of a schema graph.
More advanced heuristics can also reduce the overhead of matching all pat-
terns against the entire schema graph: By structuring the planning process into

Towards Dynamic Information Integration 27

distinct phases, first transforming all schemas into the desired data model, then
performing schematic adaptation and finally unifying their structure, the number
of simultaneously active patterns can be reduced.

Given a sufficiently large library of patterns, the task of integration planning
can now be understood as proving a hypothesis (the target schema) from a set of
axioms (the source schemas) using a set of rules (the patterns). Any successful
deduction, i.e., a sequence of pattern applications, describes an abstract query
graph or integration plan that transforms the source data into the desired target
schema, with each pattern’s M0 facet representing an operator in this graph.

In order to facilitate the definition of patterns for cases where the added
expressiveness of graph transformations is not needed, e.g. when transforming
data within a single data model, a high-level language (e.g. SQL, SchemaSQL,
XQuery) can be used to specify the pattern’s effects. This representation is then
compiled into an equivalent graph transformation.

4.3 Deployment and Runtime

To use an abstract integration plan discovered in the previous phase, it has
to be deployed to a runtime environment (RE). However, neither will existing
REs be able to directly implement the graph-oriented integration plan, nor is it
desirable to handle large amounts of data as graph transformations, especially if
an equivalent native operator exists. Instead we should reuse existing integration
systems wherever possible. This requires the translation of the abstract plan into
a logical plan using the languages and facilities provided by the chosen runtime
environment (RE). To this end, deployment rules for each supported RE define
how the abstract operators of the integration plan are mapped to the available
RE operations. For example, if the data sources are relational or supported
by relational wrappers, an existing integration system like IBM’s Information
Integrator [16] can provide sufficient functionality, and the abstract plans are
translated to a number of view definitions and wrapper configurations.

The integration tool is made available as a factory service that provides an in-
terface to deploy such plans and create a new service instance, e.g., a Grid Data
Service that provides access to the new virtual integrated database. The plan
can also be used for replication-oriented integration with an ETL tool, with the
resulting replicated data warehouse being put on the grid. A more grid-like RE
will abandon these heavy-weight services and instead implement individual op-
erators as grid services. The plan created by the integration planning service will
be used to find the required operators via common directory services. Depending
on the performance of individual nodes, available network bandwidth, etc., an
integration plan can be widely distributed, the individual operator services be-
ing choreographed using a language like BPEL or the data-flow-oriented perform
documents specified by OGSA-DAI. If a given logical operator is not supported
natively by the RE, a generic graph-based operator can serve as fallback if the
RE provides an appropriate extension mechanism. This generic operator can be
configured with the graph representation of the missing operator.

28 J. Göres

After the chosen RE has been set up, the user can access it, e.g., via a Grid
Data Service interface. Depending on the QoS requirements and the estimated
usage time, changes in the available data sources may invalidate the integration
plan. If stability of the data in the integrated schema is not absolutely necessary,
discovery, planning and deployment can be triggered automatically and trans-
parently. If up-to-dateness of the data is most relevant, a deployed plan can be
verified from time to time to discover and integrate any new data sources.

5 Conclusion and Future Work

We presented our concept for information integration in the dynamic environ-
ment of data grids. In order to reduce and ultimately remove the need for hu-
man experts to set up an integration solution, we sketched our basic concepts
to capture experience in a reusable, machine-processable way: Domain schemas
in conjunction with advanced schema matching methods provide knowledge of
the application domain and help resolve semantic heterogeneity. Integration pat-
terns are used to convey experience in solving structural and schematic conflicts
between source and target schemas.

Emphasis of our current work is on the evaluation of alternative implemen-
tations of the PALADIN metamodel and on the suitability of existing graph
matching engines for integration planning with patterns. We also analyze if
schema matching itself can be done in-band with the pattern mechanism, as
schema matching essentially introduces additional nodes and edges into a graph
representing previously unconnected schemas.

PALADIN is currently aimed at read-only access as updates considerably
raise the demands on the soundness of an integration plan. However, patterns
can also address the well-known view update problem, as they can respect the
semantics of the specific situation and provide appropriate update rules.

We are also analyzing the decidability properties of our integration planning
system: If a pattern application strategy and a schema similarity measure, ap-
plied to a set of source and target schemas and a pattern library, do not yield
a deduction after a given time, this does not imply that a deduction does not
exist, but only that none has been found, which translates to Turing’s halting
problem. Proper criteria have yet to be defined to decide when to discard a
deduction path and start backtracking or when to give up integration planning
entirely. These decisions are currently made based on heuristics and timeouts.

Although our current focus is on the integration planning phase, the deploy-
ment of abstract integration plans to a concrete runtime environment is in itself a
challenging topic. The deployment rules for different runtime environments can
themselves be considered machine-processable knowledge, i.e., patterns. How-
ever, this kind of patterns does not possess the closure property of our integra-
tion planning patterns, as the results of their use (i.e., the concrete integration
plans) are outside our metamodel. Concepts for the uniform handling of all kinds
of possible plan representations are subject of future work.

Towards Dynamic Information Integration 29

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid – Enabling Scalable
Virtual Organizations. In: Proceedings of the First IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2001), IEEE Computer Society (May
15–18, 2001)

2. Antonioletti, M., Atkinson, M., Malaika, S., Laws, S., Paton, N.W., Pearson, D.,
Riccardi, G.: The Grid Data Service Specification (September 19th, 2003)

3. Lee, D., Mani, M., Chiu, F., Chu, W.W.: NeT and CoT: Translating Relational
Schemas to XML Schemas using Semantic Constraints. In: Proceedings of the
2002 ACM CIKM International Conference on Information and Knowledge Man-
agement. (November 4–9 2002)

4. Lee, D., Chu, W.W.: CPI: Constraints-Preserving Inlining Algorithm for Mapping
XML DTD to Relational Schema. Data and Knowledge Engineering 39 (October
2001) 3–25

5. Lakshmanan, L.V.S., Sadri, F., Subramanian, I.N.: SchemaSQL – A Language
for Interoperability in Relational Multi-Database Systems. In: Proceedings of the
22nd VLDB Conference. (1996) 239–250

6. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB Journal 10 (2001) 334–350

7. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic Schema Matching with Cupid.
In: Proceedings of the 27th VLDB Conference. (2001) 49–58

8. Popa, L., Velegrakis, Y., Miller, R.J., Hernández, M.A., Fagin, R.: Translating
Web Data. In: Proceedings of the 28th VLDB Conference. (2002) 598–609

9. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal 10 (2001)
270–294

10. McBrien, P., Poulovassilis, A.: A Uniform Approach to Inter-model Transforma-
tions. 11th International Conference on Advanced Information Systems Engineer-
ing CAiSE’99 (June 14–18, 1999) 333–348

11. McBrien, P., Poulovassilis, A.: Schema evolution in heterogeneous database ar-
chitectures, a schema transformation approach. 14th International Conference on
Advanced Information Systems Engineering CAiSE 2002 (May 27–31, 2002) 484–
499

12. Object Management Group: Common Warehouse Metamodel (CWM) Specifica-
tion Version 1.1. (March 2003)

13. Schürr, A.: Programmed Graph Replacement Systems. In: Handbook of Graph
Grammars and Computing by Graph Transformations. (1997) 479–546

14. Schürr, A., Winter, A.W., Zündorf, A.: The PROGRES Approach: Language
and Environment. In: Handbook of Graph Grammars and Computing by Graph
Transformation. (1997) 487–550

15. Göres, J.: Pattern-based Information Integration in Dynamic Environments. In:
Proceedings of the 9th International Database Engineering & Applications Sym-
posium (IDEAS 2005). (July 25–27, 2005) 125–134

16. Bruni, P., Arnaudies, F., Bennett, A., Englert, S., Keplinger, G.: Data Federation
with IBM DB2 Information Integrator V8.1. (October 16, 2003)

Adapting to Changing Resource Performance

in Grid Query Processing

Anastasios Gounaris1, Jim Smith2, Norman W. Paton1, Rizos Sakellariou1,
Alvaro A.A. Fernandes1, and Paul Watson2

1 University of Manchester
{gounaris, norm, rizos, alvaro}@cs.man.ac.uk

2 University of Newcastle upon Tyne
{jim.smith, paul.watson}@ncl.ac.uk

Abstract. The Grid provides facilities that support the coordinated use
of diverse resources, and consequently, provides new opportunities for
wide-area query processing. However, Grid resources, as well as being
heterogeneous, may also exhibit unpredictable, volatile behaviour. Thus,
query processing on the Grid needs to be adaptive, in order to cope with
evolving resource characteristics, such as machine load. To address this
challenge, an architecture is proposed that has been empirically evaluated
over a prototype Grid-enabled adaptive query processor instantiating it.

1 Introduction

Grid query processing is particularly relevant where there is a need to integrate
information and analysis from different sources for specific periods of time, and
to e-Science applications, the owners of which, contrary to the typical e-business
scenario, lack the computational capacity to run some of their tasks and con-
duct in-silico experiments. Especially for the latter case, Grid query process-
ing, like many Grid computations, is likely to place a significant emphasis on
high-performance and scalability. Traditionally, query processors often attain
scalability and improved performance by relying on the benefits of parallelism.
Pipelined parallelism has been examined and adopted to different extents in
wide-area query processing [15]. Complementarily, query processing can benefit
significantly from partitioning the operators within a query execution plan across
multiple nodes, a form of parallelism commonly referred to as intra-operator or
partitioned [13], in which all the clones of an operator evaluate a different portion
of the same dataset in parallel. GridDB [16] and OGSA-DQP [1] are examples
of Grid-enabled database systems that support access to Grid computations and
databases, and exploit parallel heterogeneous infrastructures to meet demanding
application requirements.

A basic difficulty in efficiently executing a query on the Grid is that the
unavailability of accurate statistics at compile time and evolving runtime con-
ditions (such as CPU loads and network bandwidth) may cause load imbalance
that detrimentally affects the performance of static techniques for partitioned

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 30–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Adapting to Changing Resource Performance in Grid Query Processing 31

parallelism. Hence, a challenge for the query processor is to define intra-operator
data-partitioning that takes into account these changes. Failing to do so in an
efficient way may annul the benefits of parallelism. Just as in homogeneous,
controlled environments (e.g., clusters of similar nodes), a slowdown in even a
single machine that is not followed by the correct rebalancing, causes the whole
system to underperform at the level of the slow machine [2]. To tackle this, the
system needs not only to be able to capture these changes as they occur in a
wide-area environment, but also to respond to them in a comprehensive, timely
and inexpensive manner by devising and deploying appropriate repartitioning
policies.

Adaptive load balancing becomes more complicated if the parallelised oper-
ations store intermediate state or have incoming queues, like the hash join and
exchange query operators (we call such operators stateful). Assume, for example,
that a query optimizer constructs a plan in which there is a hash join parallelised
across multiple sites. A hash function applied to the join attribute defines the
site for each tuple. In this case, any data repartitioning of unprocessed tuples
needs to be accompanied by repartitioning of the hash tables that had already
been created within the hash joins.

This paper presents a comprehensive, effective and efficient solution to the
problem above. It dynamically rebalances intra-operator parallelism across Grid
nodes for both stateful and stateless operations and, in particular, it makes the
following contributions:

– It proposes an architecture for adaptive query processing (AQP) that is char-
acterised by the following features: it is non-centralised, it is service-oriented,
and its components communicate with each other asynchronously according
to the publish/subscribe model. Thus it can be applied to loosely-coupled,
autonomous environments such as the Grid.

– It presents an implementation of the architecture through extensions to the
OGSA-DQP1 distributed query processor for the Grid [1], demonstrating
the practicality of the approach. The resulting prototype has been empiri-
cally evaluated and the results show that it can yield significant performance
improvements, in some cases by an order of magnitude, in representative ex-
amples. In addition, the overhead remains reasonably low, which is important
when adaptivity is not required.

The remainder of the paper is structured as follows. The extensions to the
static OGSA-DQP system in order to transform it into an adaptive one are pre-
sented in Section 2. Section 3 demonstrates adaptations to workload imbalance.
Related work is in Section 4, and Section 5 concludes the paper.

2 Grid Services for Adaptive Query Processing

OGSA-DQP has been implemented over the Globus Toolkit 3 Grid middle-
ware. It provides two types of Grid Services to perform static query process-
1 OGSA-DQP is publicly available in open-source form from www.ogsadai.org.uk/dqp.

32 A. Gounaris et al.

Diagnoser

Responder

Q
ue

ry
 E

ng
in

e

Diagnoser

Responder

Q
ue

ry
 E

ng
in

e
adapt execution

AGQES

subscribe

subscribe

raw monitoring
events

Monitoring Event Detector

Monitoring Event Detector
send notification

send notification

subscribe

plan
submit

fragment

AGQESs

Fig. 1. An adaptive architecture for dynamic workload balancing

ing on the Grid, GDQS (Grid Distributed Query Service) and GQES (Grid
Query Evaluation Service). A GDQS contacts resource registries that contain
the addresses of the computational and data resources available and updates
the metadata catalog of the system. It accepts queries from the users, which are
subsequently parsed, optimised, and scheduled employing intra-operator paral-
lelism (e.g., [11]). The query plan consists of a set of subplans that are evaluated
by GQESs. A GQES is dynamically created on each machine that has been se-
lected by the GDQS’s optimiser to contribute to the execution. GQESs contain
the query execution engine, which adopts the iterator pipelining model of exe-
cution [13]. Data communication is encapsulated within an enhanced exchange
operator [12], as described later. Inter-service transmission of data blocks is han-
dled by SOAP/HTTP. Remote databases are accessible from the scan operators
as GDSs (Grid Data Services) exposed by the generic wrappers developed in
the OGSA-DAI project (www.ogsadai.org.uk). Also, arbitrary Web Services can
play the role of typed foreign functions and be invoked from queries (with the
operation call operator being responsible for the execution).

Adaptive GQESs (AGQESs) instantiate a novel architecture for AQP that
distinguishes between the monitoring (i.e. feedback collection), feedback assess-
ment, and response stages of adaptations. Each AGQES comprises four compo-
nents (Fig.1): one for implementing the query operators, thus forming the query

Adapting to Changing Resource Performance in Grid Query Processing 33

engine (which is the only component in static GQESs), and three for adaptivity.
The extraction of monitoring information is based on self-monitoring operators,
as reported in [10]. As such, the query engine is capable of producing raw, low-
level monitoring information (such as the number of tuples each operator has
produced so far, and the actual time cost of an operator). The MonitoringEvent-
Detector component collects such information and acts as a source of notifications
on the dynamic behaviour of distributed resources and of query execution. The
Diagnoser performs the assessment phase, i.e., it establishes whether there is an
issue with the current execution (e.g., workload imbalance). The Responder de-
cides whether and how to react. Its decisions may affect not only the local query
engine, but any query engine participating in the evaluation. The adaptivity
components can subscribe to each other and communicate asynchronously via
notifications. Note that the above approach implies that the GDQS optimiser
need not play any role during adaptations, and the distributed AGQESs encap-
sulate all the mechanisms required to adjust their execution in a decentralised
way.

3 Adapting to Workload Imbalance

3.1 Approach

The execution of a plan fragment over a fixed set of resources is considered to
be balanced when all the participating machines finish at the same (or about the
same) time. Workload imbalance may be the result of uneven load distribution
in the case of homogeneous machines, but in the case of heterogeneous machines
and the Grid, it might be the result of a distribution that is not proportional
to the capabilities of the machines employed (both because the machines are
different and because their capabilities are subject to dynamic changes). To
achieve workload balance during execution we configure the AGQESs in the
following way. The MonitoringEventDetector is active in each site evaluating a
query fragment, and receives raw monitoring events from the local query engine.
There also needs to be one activated Diagnoser and one Responder that subscribe
to the MonitoringEventDetectors (Fig.1).

Monitoring. The query engine generates notifications of the following two
types:

– M1, which contains information about the processing cost of a tuple. Such
notifications are generated by the exchange operators that form the local root
of subplans (i.e, exchange producers) and include (i) the cost of processing an
incoming tuple in milliseconds; (ii) the average waiting time of the subplan
leaf operator for this tuple, which corresponds to the idle time that the
relevant thread has spent; and (iii) the current selectivity.

– M2, which contains information about the communication cost of an outgo-
ing buffer of tuples. Such notifications are generated by exchanges that form
the local root of subplans, and include: (i) the cost of sending a buffer in

34 A. Gounaris et al.

milliseconds; (ii) the recipient of the buffer; and (iii) the number of tuples
that the buffer contains.

These low-level notifications are sent to a MonitoringEventDetector compo-
nent, which:

– groups the notifications of type M1 by the identifier of the operator that
generated the notification, and the notifications of the type M2 by the con-
catenated identifiers of the producer and recipient of the relevant buffer;

– computes the running average of the cost over a window of a certain length,
discarding the minimum and maximum values; and

– generates a notification to be sent to subscribed Diagnoser, if this average
value change by a specified threshold thresM.

The default configuration is characterised by the following parameters. The
monitoring frequency for the query engine is one notification for each 10 tuples
produced (for M1) and one notification for each buffer sent (for M2); the low level
notifications from the query engine are sent to the local MonitoringEventDetec-
tor; the window over which the average is calculated (in the MonitoringEventDe-
tector) contains the last 25 events; and the threshold thresM to generate notifica-
tions for Diagnosers is set to 20%. This means that the average processing cost
of a tuple needs to change by at least 20%, before the Diagnoser is notified. All
these values and thresholds are configurable for any component, but determining
an optimal setting has left for future work.

Assessment. The assessment is carried out by the Diagnoser. The Diagnoser
gathers information produced by MonitoringEventDetectors to establish whether
there is workload imbalance. Assume that a subplan p is partitioned across n ma-
chines, and that pi, i = 1 . . . n, is the subplan fragment sent to the ith AGQES.
The MonitoringEventDetectors notify the cost per processed tuple c(pi) for each
such subplan, as explained earlier. Also the Diagnoser is aware of the current
tuple distribution policy, which is represented as a vector W = (w1, w2, . . . , wn),
where wi represents the proportion of tuples that is sent to pi. To balance
execution, the objective is to allocate a workload w

′
i to each AGQES that is

inversely proportional to c(pi). The Diagnoser computes the balanced vector
W

′
= (w

′
1, w

′
2, . . . , w

′
n). However, it only notifies the Responder with the pro-

posed W
′
if there exists a pair of wi and w

′
i for which |wi−w

′
i|

wi
exceeds a threshold

thresA. This is to avoid triggering adaptations with low expected benefit.
The cost per tuple for a subplan c(pi) can be computed in two ways:

– A1, which takes into account only the notifications of type M1 that are
produced by the relevant subplan instance; or

– A2, which additionally takes into account the notifications of type M2 that
are produced by the subplans that deliver data to the relevant subplan in-
stance, and contain the communication costs for this delivery.

The default configuration is characterised by the following parameters. The
threshold thresA to generate notifications for Responders is set to 20%; and

Adapting to Changing Resource Performance in Grid Query Processing 35

the communication cost between subplans in the same machine (i.e., when the
exchange producer and consumer reside on the same machine) is considered zero.

Response. For operator state management, the system relies on an infrastruc-
ture that has been developed mainly to attain fault tolerance. The description
of the fault-tolerance features is out of the scope of this paper; details can be
found in [18]. Here, we briefly discuss those features that are used for state repar-
titioning. Exchanges comprise two parts that can run independently: exchange
producers and exchange consumers. The producers insert checkpoint tuples into
the set of data tuples they send to their consumers. They also keep a copy of the
outgoing data in their local recovery log. When the tuples between two check-
points have finished processing and are not needed any more by the operators
higher up in the query plan, the checkpoints are returned in the form of ac-
knowledgment tuples. In practice, the recovery logs contain, at any point, the
tuples that have not finished being processed by the evaluators to which they
were sent, and thus include all the in-transit tuples, and the tuples that make
up operator states. This provides an opportunity to repartition state across con-
sumer nodes by extracting the tuples stored in the recovery logs, and applying
the data repartitioning policy to these tuples as well.

The Responder receives notifications about imbalance from the Diagnoser in
the form of proposed enhanced workload distribution vectors W

′
. To decide

whether to accept this proposal, it contacts all the evaluators that produce data
to estimate the progress of execution in line with [7]. If the execution is not close
to completion, it notifies the evaluators that need to change their distribution
policy, and the Diagnosers that need to update the information about the current
tuple distribution (i.e, W ← W

′
). The data distribution can change in two ways:

– R1, where the tuples in the recovery logs (i.e., the tuples already buffered to
be sent, and the tuples already sent to their consumers but not processed)
are redistributed in accordance with the new data distribution policy. We
call this redistribution retrospective.

– R2, where the buffered tuples and the recovery logs are not affected. We call
this redistribution prospective.

In the R1 case, operator state is effectively recreated in other machines. This
may be useful when adaptations need to take effect as soon as possible, and is
imperative for redistributing tuples processed by stateful operators (to ensure
result correctness).

3.2 Evaluation

The experiments presented in this section show the benefits of redistributing
the tuple workload on the fly to keep the evaluation balanced across evaluators,
which results in better performance. The main results can be summarised as
follows:

– in the presence of perturbed machines, performance (i.e., response time)
improves by several factors and the magnitude of degradation, in some cases
by an order of magnitude;

36 A. Gounaris et al.

– the overhead remains low and no flooding of messages occurs; and
– the system can adapt efficiently even to very rapid changes.

Two example queries are used:
Q1: select EntropyAnalyser(p.sequence)
from protein sequences p
Q2: select i.ORF2 from protein sequences p,
protein interactions i where i.ORF1=p.ORF;

The tables protein sequences and protein interactions, along with the En-
tropyAnalyser Web Service operation, are from the OGSA-DQP demo database
and they contain data on proteins and results of a bioinformatics experiment,
respectively (the protein sequences used in the experiments is slightly modi-
fied to make all the tuples the same length to facilitate result analysis). Q1 re-
trieves and produces 3000 tuples. It is computation-intensive rather than data-
or communication-intensive. However, as shown in the experiments, Q1 is chosen
in such a way that data communication and retrieval do contribute to the total
response time. This contribution is even more significant in Q2, which joins pro-
tein sequences with protein interactions, which contains 4700 tuples. So, Q1 and
Q2 are complementary to each other: in the former, the most expensive operator
is the call to the WS, and in the latter, a traditional operator such as join.

The adaptations described can be applied to an arbitrarily large number of
machines. However, as the purpose of the current evaluation is to provide useful
insights into the behaviour and effectiveness of the adaptivity policies rather
than into how the complete system functions, a carefully controlled experimen-
tation environment is required. Thus two machines are used for the evaluation
of EntropyAnalyser in Q1, and the join in Q2, unless otherwise stated. The data
are retrieved from a third machine. All machines run RedHat Linux 9, are con-
nected by a 100Mbps network, and are autonomously exposed as Grid resources.
The third machine retrieves and sends data to the first two as fast as it can. The
iterator model is followed, but the incoming queues within exchanges can fit the
complete dataset. Due to the pipelined parallelism, the data retrieval is com-
pleted independently of the progress of the WS calls and joins. For each result,
the query was run three times, and the average is presented here. Finally, we
have used two methods to create artificial load leading to machine perturbation:
(i) programming a computation to iterate over the same function multiple times,
and (ii) inserting sleep() calls.

Performance Improvements. This set of experiments demonstrates the ca-
pability of AGQESs to degrade their performance gracefully when machines ex-
perience perturbations. Thus, they exhibit significantly improved performance
compared to static GQESs. In the first experiment, we set the cost of the WS
call in Q1 in one machine to be exactly 10 times more than in the other, and
the responses are prospective (response type R2). The first row of Table 1 shows
how the system behaves under different configurations. More specifically, the
columns in the table correspond to the following cases:

Adapting to Changing Resource Performance in Grid Query Processing 37

Table 1. Performance of queries in normalised units

Query-
Response

no ad /
no imb

ad / no
imb

no ad /
imb

ad /
imb

Q1 - R2 1 1.059 3.53 1.45

Q1 - R1 1 1.15 3.53 1.57

Q2 - R1 1 1.11 1.71 1.31

– no ad / no imb: there is no imbalance between the performance of the two
services, and adaptivity is not enabled;

– ad / no imb: there is no imbalance between the performance of the two
services, and adaptivity is enabled;

– no ad / imb: one WS call is ten times costlier than the other, thus there is
imbalance between the two services, and adaptivity is not enabled; and

– ad / imb: there is imbalance, and adaptivity is enabled.

The results are normalised, so that the response time corresponding to no ad
/ no imb is set to 1 unit for each query. The percentage of degradation due to
imbalance is given by the difference of the normalised performance from 1. The
“unnecessary” adaptivity overhead is the overhead incurred when adaptivity is
not needed (i.e., there is no imbalance)2, which can be computed by the difference
between the second and the third columns of Table 1 (1st row). This difference
is 5.9%. When one WS is perturbed and there are no adaptivity mechanisms,
the response time of the query increases 3.53 times (4th column in Table 1).
For this type of query, the cost to evaluate the WS calls is the highest cost.
However, it is not dominant, as there is significant I/O and communication
costs. Thus, a 10-fold increase in the WS cost results in a 3.53-fold increase in
the query response time. The adaptive system manages to drop this increase to
1.45 times, performing significantly better than without adaptivity (45% increase
when adaptivity is enabled as opposed to 253% when it is disabled).

The 2nd row in Table 1 shows the results when the experiment is repeated, and
the adaptation is retrospective (type R1 of response). The increase in response
time when the adaptivity is not enabled (no ad / imb) remains stable as expected
(3.53 units). However, the average overhead (ad / no imb) is nearly three times
more (15.3% of the execution). This is because it is now more costly to perform
log management, as the tuples already sent to remote evaluators need to be
discarded and redistributed in a tidy manner. Because of the larger overhead,
the degradation of the performance in the imbalanced case (ad / imb) is larger
than for prospective response (1.57 times from 1.45).

The same general pattern is observed for Q2 as well, using the second method
to create imbalance artificially. In this case, the perturbation is caused in one
2 Without adaptivity, the machines finish at the same time (the difference is in the

order of fractions of seconds). This, in general, cannot be attained in a distributed
setting. In more realistic scenarios, adaptivity is very rarely “unnecessary”, even
when distributed services are expected to behave similarly, but these experiments
aim to show the actual overhead.

38 A. Gounaris et al.

10 times 20 times 30 times
0

1

2

3

4

5

6

7

8

9

10

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

10 times 20 times 30 times
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

A1 − R2
A1 − R1
A2 − R2

(a) (b)

Fig. 2. (a) Performance of Q1 for prospective adaptations; (b) Performance of Q1 for
different adaptivity policies

machine by the insertion of a sleep(10msecs) call before the processing of each
tuple by the join. The 3rd row of Table 1 shows the performance when the
adaptations are retrospective. The overhead is 11%, and adaptivity, in the case
of imbalance, makes the system run 1.31 times slower instead of 1.71.

Varying the Size of Perturbation. We reran Q1 for the cases in which the
perturbed WS is 10, 20 and 30 times costlier, and adaptations are prospective.
Fig. 2(a) shows that the improvements in performance are consistent over a rea-
sonably wide range of perturbations. When the WS cost on one of the machines
becomes 10, 20 and 30 times costlier, the response time becomes 3.53, 6.66 and
9.76 times higher, respectively, without dynamic balancing. With dynamic bal-
ancing, these drop to 1.45, 2.48 and 3.79 times higher, respectively, i.e., the
performance improvement is significant consistently.

Effects of Different Policies. Thus far, the assessment has been carried out
according to the type A1, in which communication cost is not taken into account.
The next experiment takes a closer look at the effects of different adaptivity poli-
cies. Three cases are examined: (i) when the Diagnoser does not take into account
the communication cost to send data to the subplan examined for imbalance,
and no state is recreated (type A1 of assessment combined with type R2 of re-
sponse); (ii) when the Diagnoser does not take into account the communication
cost to send data to the subplan examined for imbalance, and state is recreated
(type A1 of assessment combined with type R1 of response); and (iii) when the
Diagnoser does take into account the communication cost to send data to the
subplan examined for imbalance, and no state is recreated (type A2 of assess-
ment combined with type R2 of response). In essence, when the communication
cost is not considered (assessment A1), an assumption is made that the cost for
sending data overlaps with the cost of processing data due to pipelined paral-
lelism. We believe that such an assumption is valid for this specific experiment,
and indeed, this is verified by the experimental results discussed next.

Adapting to Changing Resource Performance in Grid Query Processing 39

10msec 50msec 100msec
0

1

2

3

4

5

6

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

10 times 20 times 30 times
0

1

2

3

4

5

6

7

8

9

10

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

adaptivity disabled
adaptivity enabled

(a) (b)

Fig. 3. (a) Performance of Q2 for retrospective adaptations; (b) performance of Q1 for
prospective adaptations and double data size

The performance of the three configurations for Q1 is shown in Fig. 2(b).
Although all of them result in significant gains compared to the static system,
some perform better than others. From this figure we can observe: (i) that taking
pipelining into consideration (by performing the assessment of type A1) has an
impact on the quality of the decisions and results in better repartitioning (see
the difference between the leftmost and the rightmost bar in each group); and (ii)
that retrospective adaptations (R1 response) behave better than the prospective
ones for bigger perturbations (see the difference between the leftmost and the
middle bar in each group). The latter is also expected, as the overhead for recre-
ating state remains stable independently of the size of perturbations, whereas
the benefits of removing tuples already sent to the slower consumers, and re-
sending them to the faster ones increases for bigger perturbations. Also, from
Fig. 2(b), it can been seen that the bars referring to retrospective adaptations
remain similar with different sizes of perturbation, which means that the size of
performance improvements increases with the size of perturbations. This hap-
pens for two complementary reasons: (i) the higher the perturbation, the more
tuples are evaluated by the faster machine, in a way that outweighs the increased
overhead for redistributing tuples already sent or buffered to be sent; and (ii) for
any of these perturbations, only a very small portion of the tuples is evaluated
by the slower machine, which makes the performance of the system less sensitive
to the size of perturbation of this machine.

Experiments with Q2 lead to the same conclusions. Fig. 3(a) shows the be-
haviour of the join query when the sleep() process sleeps for 10, 50 and 100 msecs,
respectively, and adaptations are of type A1 of assessment and R1 of response.
As already identified in Fig. 2(b), retrospective adaptations are characterised by
better scalability, and their performance is less dependent on the perturbation.

Varying the dataset size. From the figures presented up to this point, ret-
rospective adaptations outperform the prospective ones, but suffer from higher
overhead. The reason why prospective adaptations exhibit worse performance

40 A. Gounaris et al.

0 1 2 3
1

1.5

2

2.5

3

3.5

number of perturbed machines

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no adaptivity
adaptivity

0 1 2 3
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

number of perturbed machines

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no adaptivity
adaptivity

1 2 3
1

2

3

4

5

6

7

8

9

number of perturbed machines

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

no adaptivity
adaptivity

(a) 10 times (b) 20 times (c) 30 times

Fig. 4. Performance of Q1 for retrospective adaptations

is that a significant proportion of the tuples have been distributed before the
adaptations can take place. Intuitively, this can be mitigated in larger queries.
Indeed, this is verified by increasing the dataset size of Q1 from 3000 tuples to
6000, and making one WS call 10, 20 and 30 times costlier than the other, and
the adaptations are prospective. Fig. 3(b) shows the results, which are very close
to those when adaptations are retrospective (i.e., Fig. 2(b) for Q1 and Fig. 3(a)
for Q2 compared to Fig. 2(a)), and lead to better performance improvements.

Varying the number of perturbed machines. Fig. 4 complements the above
remarks by showing the performance of Q1 for different numbers of perturbed
machines when adaptations are retrospective (three machines have been used for
WS evaluation in this experiment). Again, perturbations are inserted by making
one WS call 10, 20 and 30 times costlier than the other (Fig. 4(a), (b) and (c),
respectively). Due to the dynamic balancing property, the performance degrades
very gracefully in the presence of perturbed machines. As explained in detail
earlier, the performance when adaptivity is enabled, is very similar for different
magnitudes of perturbation, when there is at least one unperturbed machine.
Thus the plots corresponding to the case of enabled adaptivity are similar for up
to two out of three perturbed machines. Note that the relative degradation (i.e.,
difference from value 1 in the figures) can be improved by an order of magnitude.

Overheads. This set of experiments investigates overheads. We run Q1 when
there is no WS perturbation. As shown from Table 1, the overhead of prospective
adaptations is 5.9%. This value is the average of two cases. When the adaptivity
mechanism is enabled but no actual redistribution takes place, the overhead is
6.2%. However, due to slight fluctuations in performance that are inevitable in
a real wide-area environment, if the query is relatively long-running, the system
may adapt even though the WSs are the same. For prospective adaptations, a
poor initial redistribution may have detrimental effects, since by the time the
system realises that there was no need for adaptation, the stored tuples may al-
ready have been sent to their destination. Nevertheless, on average, the system
behaves reasonably with respect to small changes in performance and incurs a
5.6% overhead. The ratio of the number of tuples sent to the two machines is

Adapting to Changing Resource Performance in Grid Query Processing 41

prospective retrospective
0

0.5

1

1.5

2

2.5

3

3.5

4

no
rm

al
is

ed
 r

es
po

ns
e

tim
e

[30,30]
[25,35]
[20,40]
[1,60]

Fig. 5. Performance of Q1 under changing perturbations

slightly imbalanced: 1.21. The overhead is slightly smaller than when no actual
redistribution occurs as there are benefits from the redistribution.

When the adaptations are retrospective, the overhead is significantly higher,
as already discussed. However, the ratio of the tuples is close to the one indicating
perfect balance: 1.01. From the above, it can be concluded that retrospective
adaptations, even if they are not necessary for ensuring correctness, may be
employed when perturbations are large. However, it is felt that the overheads
imposed for both types of distribution are reasonable and are worthwhile given
the scale of expected gains during perturbations.

We also examined the behaviour of the system for Q1, when the WS cost on
one machine is 10 times greater than on the other, and the frequency of generating
raw monitoring events from the query engine varies between 0 (i.e., no monitoring
to drive adaptivity), and 1 notification per 10, 20 and 30 tuples produced. Both
the adaptation quality and the overhead incurred were rather insensitive to these
monitoring frequencies (figure omitted due to space limitations). This is because
(i) the mechanism to produce low-level monitoring notifications has been shown to
have very low overhead [10], and (ii) the adaptivity components filter the notifica-
tions effectively. On average, between 100 and 300 notifications are generated from
the query engine, but the MonitoringEventDetector needs to notify the Diagnoser
only around 10 times, 1-3 of which lead to actual rebalancing. Thus the system is
not flooded by messages, which keeps the overhead low.

Rapid Changes. The final set of experiments aims to show the dynamic na-
ture of the system. Thus far, the perturbations have been stable throughout
execution. A question arises as to whether the system can exhibit similar per-
formance gains when perturbations vary in magnitude over the lifetime of the
run. In these experiments the perturbation varies for each incoming tuple in a
normally distributed way, so that the mean value remains stable. Fig. 5 shows

42 A. Gounaris et al.

the results when the differences in the two WS costs in Q1 vary between 25 and
35 times, between 20 and 40 times, and between 1 and 60 times The leftmost
bar in each group in the figure corresponds to a stable cost, which is 30 times
higher (e.g., bar A1-R2, 30times in Fig. 2(b) for prospective adaptations), and
is presented again for comparison purposes. We can see that the performance
with adaptivity is modified only slightly, which enables us to claim that the
approach to dynamic balancing proposed in this paper can adapt efficiently to
rapid changes of resource performance.

4 Related Work

Query processing on the Grid is a special form of distributed query processing
over wide-area autonomous environments. Work in this area has resulted in many
interesting proposals such as ObjectGlobe [5], but has largely ignored the issues
of intra-query adaptivity. Adaptive query processing is an active research area
[4]. However, proposals usually focus on centralised, mostly single-node query
processing, and do not yet provide robust mechanisms for responding to changes
in the resource performance, which is important especially when an arbitrarily
large number of autonomous resources can participate in the query execution,
as it is the case in Grid query processing.

As an example that does consider distributed settings, [14] deals with adap-
tations to changing statistics of data from remote sources, whereas our proposal,
complementarily, focuses on changing resource behaviour. Moreover, sources in
[14] only provide data, and do not otherwise contribute to the query evaluation,
which takes place centrally. Eddies [3] are also used in centralised processing of
data streams to adapt to changing data characteristics (e.g., [6]) and operator
consumption speeds. When Eddies are distributed, as in [19], such consump-
tion speeds may indicate changing resources. Nevertheless, our approach is more
generic as (i) it is not clear how distributed Eddies [19] can extract the statistics
they need in a wide-area environment, and how they can keep the messaging
overhead low; (ii) Eddies cannot handle all kinds of physical operators (e.g., tra-
ditional hash joins); and (iii) redistribution of operator state is not supported.
Adapting to changing data properties has also been considered in distributed
query processing over streams [8].

In general, workload balancing has been thoroughly examined in parallel
databases, but only assuming a context where participating machines either
share resources such as disks and memory, or are inter-connected by fast ded-
icated networks in such a way that data communication is simple and not ex-
pensive. As OGSA-DQP is deployed in a different setting, the infrastructure for
traditional workload balancing needs to be revisited. For data and state repar-
titioning, the most relevant work is the Flux operator for continuous queries
[17]. The Flux approach has been implemented at the operator level, whereas,
our approach is based on loosely coupled components, which can be more easily
extended. Rivers [2] follow a simpler approach, and are capable of performing

Adapting to Changing Resource Performance in Grid Query Processing 43

data (but not state) repartitioning. State management has also been considered
in [9], but only with a view to allowing more efficient, adaptive tuple rerouting
within a single-node query plan.

5 Conclusions

The volatility of the environment in parallel query processing over heterogeneous
and autonomous wide-area resources makes it imperative to adapt to changing
resource performance, in order not to suffer from serious performance degrada-
tion. This paper proposes a solution for dynamic workload balancing through
data and operator state repartitioning. This solution is instantiated in the con-
text of a more generic architectural framework implemented through extensions
to the Grid-enabled open-source OGSA-DQP system. The implementation is
particularly appealing for environments such as the Grid, as it is based on
loosely-coupled components, engineered as Grid Services, which communicate
asynchronously and support the publish/subscribe model. The results of the
empirical evaluation are promising: performance is significantly improved (by an
order of magnitude in some cases), while the overhead remains low enough to
allow the benefits of adaptation to outweigh the cost in a wide range of scenarios.

Acknowledgements. This work has been supported by the UK EPSRC grant
GR/R51797/01, and by the UK e-Science Programme through the DAIT project.

References

1. N. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton, P. Watson, and A. A. A.
Fernandes. OGSA-DQP: A grid service for distributed querying on the grid. In
Proc. of 9th EDBT Conference, pages 858–861, 2004.

2. R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Pat-
terson, and K. Yelick. Cluster I/O with River: Making the fast case common. In
Proc. of the Sixth IOPADS Workshop, pages 10–22, 1999.

3. R. Avnur and J. Hellerstein. Eddies: continuously adaptive query processing. In
Proc. of ACM SIGMOD 2000, pages 261–272, 2000.

4. S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In CIDR,
pages 238–249, 2005.

5. R. Braumandl, M. Keidl, A. Kemper, K. Kossmann, A. Kreutz, S. Seltzsam, and
K. Stocker. ObjectGlobe: Ubiquitous query processing on the Internet. VLDB
Journal, 10(1):48–71, Aug. 2001.

6. S. Chandrasekaran and M. Franklin. PSoup: a system for streaming queries over
streaming data. VLDB Journal, 12:140–156, 2003.

7. S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating progress of execu-
tion for sql queries. In Proc. of ACM SIGMOD, pages 803–814, 2004.

8. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing,
and S. Zdonik. Scalable distributed stream processing. In CIDR, 2003.

9. A. Deshpande and J. M. Hellerstein. Lifting the burden of history from adaptive
query processing. Proc. of 30th VLDB Conf., pages 948–959, 2004.

44 A. Gounaris et al.

10. A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakellariou. Self monitoring
query execution for adaptive query processing. Data and Knowledge Engineering,
51(3):325–348, 2004.

11. A. Gounaris, R. Sakellariou, N. W. Paton, and A. A. A.Fernandes. Resource
scheduling for parallel query processing on computational grids. In Proc. of 5th
IEEE/ACM GRID Workshop, pages 396–401, 2004.

12. G. Graefe. Encapsulation of parallelism in the Volcano query processing system.
In Proc. of ACM SIGMOD, pages 102–111, 1990.

13. G. Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2):73–170, 1993.

14. Z. Ives, A. Halevy, and D. Weld. Adapting to source properties in processing data
integration queries. In Proc. of ACM SIGMOD, pages 395–406, 2004.

15. D. Kossmann. The state of the art in distributed query processing. ACM Com-
puting Surveys, 32(4):422–469, 2000.

16. D. T. Liu, M. J. Franklin, and D. Parekh. GridDB: a relational interface for the
grid. In Proc. of ACM SIGMOD, pages 660–660, 2003.

17. M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin. Flux: An adaptive
partitioning operator for continuous query systems. In Proc. of ICDE, pages 25–36,
2003.

18. J. Smith and P. Watson. Fault-tolerance in distributed query processing. Technical
Report CS-TR-893, School of Computing Science, The University of Newcastle
upon Tyne, 2004.

19. F. Tian and D. DeWitt. Tuple routing strategies for distributed eddies. In Proc.
of 29th VLDB Conference, pages 333–344, 2003.

An Adaptive Distributed Query Processing

Grid Service

Fabio Porto1, Vińıcius F.V. da Silva2, Márcio L. Dutra2,3, and Bruno Schulze2

1 EPFL - School of Computer and Communication Sciences,
Database Laboratory, Lausanne, Switzerland

fabio.porto@epfl.ch
2 National Laboratory for Scientific Computation - Computer Science Dep,

RJ - Brazil
3 Military Institute of Engineering - System Engineering Dep, RJ - Brazil

Abstract. Grid services provide an important abstract layer on top of
heterogeneous components (hardware and software) that take part into
a grid environment. We are developing a data grid service prototype that
aims at providing transparent use of grid resources to data intensive sci-
entific applications. Our prototype was designed having as target three
main issues: (1) dynamic scheduling and allocation of query execution
engine modules into grid nodes; (2)adaptability of query execution to
variations on environment conditions and (3) support to special scien-
tific operations. We propose a new node scheduling algorithm and show
how it can be integrated into a simple distributed and parallel query
optimization strategy. Our implementation demonstrates a speedup of
16.6 with 18 scheduled nodes and a steady throughput rate, obtained
applying a dynamic adaptive strategy.

1 Introduction

The development of grid services as proposed by the Open Grid Services Ar-
chitecture OGSA [1] promotes the isolation of user applications in respect to
the heterogeneity inherent to the grid environment. While middleware systems
like the Globus toolkit [2] offer some basic functionalities on top of a grid in-
frastructure, mainly regarding: authentication, remote task scheduling and file
transfer, this is not enough for the deployment of complex applications involving
the processing of users programs and the access to distributed data. For these
more complex types of applications an extension was proposed of the web ser-
vice technology towards (grid) web services, where services state and life cycle
can be managed [3]. This extension was first proposed in the OGSI - Open Grid
Services Infrastructure and more recently has been turned into the WSRF Web
Services Resource Framework [3]. The idea is that by designing and composing
grid services, one may achieve higher level functionalities specific tailored to the
envisaged application and still support the fundamental characteristics offered
by established distributed systems such as Common Request Broker Architec-
ture CORBA, from the Object Management Group. Regarding data services for

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 45–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 F. Porto et al.

the grid, some projects like OGSA-DAI [4] and Data Grid [5] aim at providing
a uniform service interface for data access and integration of databases in the
grid, in addition to higher-level services like data replication.

Our project contributes to the grid data service layer by conceiving high-level
services for data intensive grid applications. In this context, we are develop-
ing a Configurable Data Integration Middleware for the grid (CoDIMS-G) that
is a distributed grid service for the evaluation of scientific queries. The design
of CoDIMS-G focused on conceiving efficient and adaptable query evaluation
strategies for the grid environment. Efficiency comes with adequate initial re-
source allocation based on grid nodes historical profiles and managing inter-node
communication. Adaptability is the result of online routing decisions and transfer
block size management.

We designed a query optimization strategy tailored for queries including in-
tensive computations, like scientific programs. The strategy integrates a new
node scheduling algorithm that selects grid nodes for parallel evaluation of frag-
ments of the query execution plan. In addition, we implemented a distributed
query engine, running as grid services, that adapts execution to the actual data
flow in allocated grid nodes. We extended the Eddy operator [6] to deal with
the adaptivity of tuple block size routing through scheduled nodes and to imple-
ment an iteration mechanism over a query execution plan fragment, as required
by loop control found in some scientific applications.

We currently use CoDIMS-G to support the pre-processing stage of a scientific
visualization application (SVA)that is being developed at the National Labora-
tory of Scientific Computing (LNCC), in Brazil, as a testbed for our prototype.
The SVA computes the path of virtual particles through a fluid flow [7]. Our
challenge is to minimize the elapsed-time for pre-computing the virtual particle
trajectory. We modelled this scenario as a database problem and used CoDIMS-
G to generate and evaluate a parallel query execution plan that transparently
access grid resources and dynamically adapt to unforeseen fluctuations during
query execution.

Our implementation demonstrates a speedup of 16.6 1 with 18 scheduled nodes
and a steady throughput rate.

The rest of this paper is organized as follows. In section 2, we present impor-
tant work covering grid data services and scientific visualization. Next, section 3
introduces our running example based on the pre-processing stage of fluid path
visualization. Section 4 introduces the CODIMS-G architecture and section 5
presents the distributed query optimization strategy. Emphasis is given on the
G2N scheduling algorithm and its integration into the query execution plan.
Section 6 presents the query execution engine components and discuss the influ-
ence of our distributed adaptive strategy into query execution. Section 7 presents
initial results obtained running CoDIMS-G in a controlled environment with up
to 20 grid nodes. Finally, we present our conclusions and future work.

1 We computed speedup as the ratio between the elapsed-time of a centralized execu-
tion and a parallel one.

An Adaptive Distributed Query Processing Grid Service 47

2 Related Work

The problem of integrating distributed query processing technology with a grid
service has been addressed in the OGSA-DQP project [8]. In this project, the
query processor is served by a set of orchestrated services that manage dis-
tributed data access, resources metadata information and services instances cre-
ation and management. The DQP service is built on top of a OGSA-DAI [9]
implementation that provides services interfaces for data source access; data
transfer and data source services instances management. Query processing is
done by services encapsulating the Polar* [10] distributed object oriented query
processor. DQP offers query capabilities very similar to those proposed in this
paper. Query execution service instances are deployed in grid nodes to imple-
ment user programs parallelization. Physical algebraic operators, like exchange
and operation-call, implement inter-node communication and user program in-
vocations, respectively. Our proposal differs from the one in OGSA-DQP in the
following aspects. Firstly, we propose a grid node selection algorithm based on
historical of application execution and integrate it into a distributed query op-
timization strategy. Secondly, in contrast to DQP static generated query execu-
tion plan, our query execution engine extends Eddies adaptive query execution
strategy to cope with execution time variations not captured during query opti-
mization stage. Finally, we dynamically reanalyze node allocation by comparing
actual node throughput with estimated values and, eventually, calling the dy-
namic optimizer to reschedule grid nodes.

There has also been some work on adaptive execution of applications in the
grid environment [11]. These works focus on adapting the execution of an ap-
plication to the changing conditions of selected grid nodes. The problem in this
context is to identify points where execution may be interrupted in a node and
restarted in other nodes, keeping data context. In respect to CoDIMS-G ap-
proach, these would be classified as application centric adaptations, whereas
CoDIMS-G is data centric adaptation, managing adaptation in the tuple/block
level.

Examples of scientific visualization applications problems that consider parti-
cles tracing problems can be found in [16]. Such problem can be mathematically
defined by an initial value problem [12]: dx /dt = F(x,t), x(0)=P0, (1) where
F : R3 x R + − > R, is a time-dependent vector field (velocity, for example).
The solution of problem (1) for a set of initial conditions gives a set of integral
curves which can be interpreted as the trajectory of massless particles upon the
flow defined by the field F(x,t). Other particle tracing methods can be used
(streamlines, streaklines, among others.) with slight modifications of the above
equation [13].

3 The Scientific Visualization Problem

We use as testbed application, the preprocessing stage of scientific visualization
application that simulates a fluid flow through a path [7]. In this preprocessing

48 F. Porto et al.

stage, an instant shot of the flow is taken and comprises a set of fluid virtual
particles (VP), and a geometry model of the domain, with velocity vectors as-
sociated to space objects. In addition, two user programs are involved.

The database representation for the pre-computing stage of the scientific vi-
sualization application we are using comprehends the relations: Geometry, Ve-
locity and Particle and two user programs. The Geometry relation stores data
associated with polyhedron’s geometry and the Velocity relation corresponds
to velocity vectors for each time instant, whereas the Particle relation holds
the initial particle position. The Resulting-vector user program computes a re-
sulting speed vector in a specific position of the flow path and the Trajectory
Computing Program (TCP) computes VP’s subsequent position, given its initial
position and the corresponding resulting speed vector. The database model for
this application is represented below2:

relation schema:

– Geometry (idpolyhedron integer, polyhedron list of < pointid integer,
vertice point >)

– Velocity (idpolyhedron integer,timeinstant integer, speed-vector list of <
point >)

– Particle (part-id integer,position point)

user programs interface:

– Resulting-vector(point, speed-vector list of < point >): point;
– TCP (point, speed):new-position.

The computation of each particle iteration can be expressed with an SQL
query, such as the one in Figure 1.

Select part.part-id, TCP(part.position,resulting-vector(part.position,v.speed-vector))

From g in geometry, v in velocity,

part in particle

Where part.position in g.polyhedron and

g.idpolyhedron = v.idpolyhedron and

v.timeinstant = $time

Fig. 1. TCP query

Some aspects of this model require special attention. The trajectory of a
virtual particle through the fluid path is simulated by a certain number of inter-
mediary positions, between the initial and final position of the virtual particle in
the path, referred to as iterations in the SVA jargon. Usually, higher number of
iterations accounts for a smoother visualization of virtual particles flow. Com-
puting intermediary positions in the path corresponds, in our database model,
to repetitively computing the TCP query with different time values and initial

2 We consider an Object-Relational model [14].

An Adaptive Distributed Query Processing Grid Service 49

position for each virtual particle. Regarding the respective query execution plan,
iterations correspond to multiple evaluations of a single query execution plan
fragment. Secondly, the join predicate between Particle and Geometry relations
is modelled as a spatial join [15] where the position of a particle matches the
region defined by the polyhedron.

Such queries can take a long time to process on conventional machines as
a result of: the number of particles; the number of iterations; the size of the
geometry; the hash-join swap profile or/and the fluid path model complexity.
As a result of this, using the processing power available in a grid environment
may substantially reduce the time needed for pre-processing virtual particle tra-
jectory. Nevertheless, in order to make it feasible for the scientific visualization
community, one must provide services that will hide the complexity of executing
a query, like the one in Figure 1, in a grid environment.

Therefore, CoDIMS-G offers transparent data access with integrated user’s
programs execution within the grid. It is designed to offer efficient, adaptive and
high level query processing service for scientific applications.

4 CoDIMS-G Architecture

CoDIMS-G is an instance of the CoDIMS environment [16] that is being devel-
oped to support data and program integration for scientific applications running
in a grid. The main components of the CoDIMS-G architecture are depicted in
Figure 2.

The entry point for user query submission is provided as a service running
in a gatekeeper machine accessible both from outside and inside of the grid.
Users requests are forwarded to the Control component, which sends them to

Client interface

M
e

ta
d

a
ta

m
a

n
a

g
e

r

Control

Query
Analyzer

Query optimizer/
G2N

Query execution
Manager

Query
engine1

Query
engine2

Query
engine n

D
a

ta
S

o
u

rc
e

1

D
a

ta
S

o
u

rc
e

2

CoDIMS-G

Fig. 2. The CoDIMS-G architecture

50 F. Porto et al.

the query processing system. The latter is composed of: a query analyzer; a
query optimizer; a query execution manager and query engines (QE). The query
optimizer includes a scheduler component that selects available nodes to be
used during query execution. In particular, whenever an algebraic operator is
parallelized, the scheduler indicates the set of interesting nodes to be allocated
for its evaluation. The scheduler and optimizer cooperate to generate an initial
distributed parallel query execution plan DQEP. A QE is the component where
actual query execution takes place. It creates the physical operators conforming
to the DQEP, including data process and control flow operators. Instances of
QE are instantiated into grid scheduled nodes. Each QE receives a fragment
of the DQEP and is responsible for the instantiation of the operators and the
execution control, including the communication with other fragments for tuple
consumption and production. As part of the DQEP, the scan operator accesses
data sources using wrappers that prepare the data according to a global data
model.

5 Distributed Query Processing

In this section we describe the grid query optimization strategy adopted in
CoDIMS-G.

Considering the lack of and fluctuation on grid resources statistics, and the
particularities of some scientific data sources, a static query execution plan can be
highly inefficient. As such, we opted for a simple query optimization strategy that
produces an initial, not necessarily optimal, DQEP that will be adapted during
execution. Adaptation in this context, stems for the fact that tuple routing is
decided based on actual performance measures obtained from running operators
or allocated nodes.

Our query optimization approach is inspired on the SystemR* distributed
query optimization strategy [17]. The approach focuses on distributed queries in
which the execution cost is dominated by the evaluation of: expensive
predicates 3, user programs, and data transfer. We also explore a particular-
ity of the scientific application domain, such as that queries usually include few
(rarely more than 3) expensive predicates and user programs.

Before presenting our optimization algorithm, some definitions are necessary.
We consider a query represented as a query graph QG [18], where nodes model
relations or user programs. Non directed edges in the QG represent join predi-
cates between relations and directed edges represent data dependency between
nodes (eg. an input to a user program). A pair of labelled directed edges deter-
mine a sub-graph modelling the sub-query through which tuples should iterate.
This is to accommodate the iteration nature of the application we are supporting.
Finally, restrictions and projections are annotated with corresponding nodes.

Based on the QG produced by a query analyzer and in accordance to its data
dependency and query restrictions, the query optimization algorithm explores
the search space of valid plans. The analyzes of the search space is conducted
3 Joins and predicates over user program results.

An Adaptive Distributed Query Processing Grid Service 51

according to two principles: obeyance to the sub-query iteration borders; focus
on expensive predicate evaluation order and definition of a parallelization strat-
egy for expensive operators. The challenge is to come up with a simple strategy
(i.e. one that consumes a very small fraction of query elapsed-time) that ac-
commodates all these principles. In view of this, the adopted query optimization
approach explores all valid execution orders of expensive predicates in QG nodes.
For each expensive operator in a plan, a decision must be made regarding the
use of grid resources to run it in a intra-operator parallel mode. Three alterna-
tives are analyzed: (a)non parallelization, (b)scheduling according to the G2N
algorithm (see section 5.1), and (c) adoption of the same parallelization strategy
used by the previous operator in the query execution plan. For each computed
query execution plan, a cost is associated, using a parallel pipeline cost function
[19]. The DQEP presenting the lowest cost is selected for execution.

Additionally, the query optimizer introduces into the DQEP transfer oper-
ators, Sender (Receiver) and Split(Merge). These operators are placed in the
borders of data transfer between nodes. Moreover, the Eddy operator is placed
in the DQEP in the base of an iteration fragment. Note that, in our implemen-
tation, Eddy responds for the iteration of tuples through a sub-query.

The initial DQEP is the basis for the correct instantiation of query operators
during query execution phase. It gives the correct data processing semantics and
control flow operators necessary for an equivalent execution in respect to a user
query. As we will present in section 6, the actual routing of tuple evaluation is
defined by the Eddy operator based on runtime characteristics and restrictions
specified in the DQEP.

5.1 The Grid Greedy Node Scheduling Algorithm

In this section we present the grid greedy node G2N scheduling algorithm. The
main idea behind G2N can be stated as: ”an optimal parallel allocation strategy
for an independent query operator, of a tuple by tuple type, in a set of nodes is
the one in which the operator execution elapsed-time is minimum with respect
to the evaluation of a bag of tuples and produces a balanced use of resources”.

The problem can be formalized as follows: given a set of N nodes, with infor-
mation regarding node throughput, and a set of equally costly independent tasks
P, define a subset N1 of N, which minimizes the elapsed-time for evaluating all
tasks in P.

The G2N algorithm receives a set of available nodes with corresponding aver-
age throughput (tp1, tp2, . . . , tpn), measured in tuples per second. This includes
the average cost involved in transferring one tuple to the evaluating node and
processing it. The output of G2N comprises a set of selected grid nodes. We now
briefly present a description of the algorithm. Initially, the algorithm classifies
the list of available grid nodes in decreasing order of their corresponding average
throughput values. It then allocates all T tuples to the fastest node. The main
program loop tries to reallocate, at least one tuple from the already allocated
nodes to a new grid node (less performing, next in line). Tuples are extracted
from a node representing the highest elapsed-time so far. If it succeeds to do

52 F. Porto et al.

so, by producing a new evaluation estimation with reduced query elapsed-time,
it continues reallocating tuples to the new allocated grid node, until the overall
elapsed-time becomes higher than the last computed one. Conversely, if the re-
allocation of a single tuple produces an execution with higher elapsed-time than
the one without the new grid node, the algorithm stops and outputs the grid
nodes accepted so far.

The output produced by G2N loads the query optimizer with parallelization
decision regarding each expensive operator, adding to the generation of the initial
query execution plan and the re-scheduling of allocated nodes in face of variations
on estimated values.

Summarizing this section, we discussed the optimization strategy adopted in
CoDIMS-G for generating an initial distributed query execution plan for queries
similar to the one in Figure 1. Once the DQEP has been produced it is sent to
the query execution machine for evaluation. The execution process is described
in section 6.

6 Query Execution

Query execution in CoDIMS-G is implemented as an instance of the QEEF
[20] software framework, designed to allow extensions to support new query
characteristics, including new operators, different query algebra and execution
models among others.

The distributed query engine architecture comprises a distribution node, run-
ning the Eddy operator and remote QE nodes, running fragments of the DQEP,
Figure 3. Rectangles in figure 3 correspond to DQEP operator fragments and
edges represent data flow.

The eddy operator consumes tuples from query data-sources and routes them
in tuple block unit to remote nodes running a fragment of the DQEP. Once
tuples reach the top of the remote fragment, they are again packed into a tuple
block and bounced back to eddy. For a given tuple, this cycle continues until it is
eliminated by a restriction operation or it has been processed by all operations
and passed through all iterations in the DQEP.

Our eddy implementation includes a pair of split/send operators, that dis-
tributes tuples to QEs running remote fragments and receive/merge that obtains
tuples evaluated by remote fragments. The split and merge operators compose
the distribution function of eddy. The sender operator allocates tuples to be
transferred to nodes according to a block size computed as a function of the
target node throughput, the number of tuples allocated to the node by G2N
and the communication cost. As a matter of fact, as we have observed in our
experimentation, the block size has a large influence in the whole eddy through-
put.

It is a unit for managing system adaptivity. The split operator modifies a
remote node block size in the following scenarios. Firstly, in the event of a time-
out. The sender controls the limit of time it waits for completing a block. The
timeout value is computed as a function of the expected time to evaluate a block

An Adaptive Distributed Query Processing Grid Service 53

Fig. 3. CoDIMS-G adaptive query execution framework

of tuples. If a timeout is reached, the block is sent with the current number
of allocated tuples. Secondly, eddy proceeds a local adaptation by checking on
current throughput values registered for a node. If average throughput shows
differences of 30% in respect to estimated values, eddy re-computes the node
block size with a variation corresponding to the throughput one. Thirdly, eddy
checks on global variations 4 concerning all scheduled nodes. When the average
variation crosses a threshold, eddy invokes G2N and proceeds a re-scheduling of
nodes.

Data requests from competing remote fragments are prioritized in a queue
by the split operator that produces one block of tuples a time with block size
corresponding to that of the highest throughput node requesting data to be
consumed.

6.1 Supporting Scientific Applications

In order to support the SVA, the QEEF framework has been extended to cope
with the following requirements: user’s program execution; spatial and temporal
hash-joins; loop control over query execution plan fragment; distribution and
parallelism. The strategy for introducing user programs into a DQEP is to im-
plement the Apply operator [21] as a new algebraic operator that encapsulates
users’ program invocation and parameters passing by values extracted from in-
put tuples. The operator implements the standard iterator interface [22] and,
for each tuple, invokes the user program with the input parameters captured
from the input tuple. User program’s result is concatenated to the input tuple
to compose an output tuple.

The SVA required the design and implementation of a spatial-hash join (SHJ)
operator. As other operators, the SHJ implements the iterator interface. The op-
erator was implemented with two main modules:partition and probe, each run-
ning in different threads. The partition module consumes tuples placing them
4 Global variations are computed comparing estimated throughput values and actual

values for each node and taking the average.

54 F. Porto et al.

in buckets according to their position. Next, the probe thread load buckets and
evaluate joins. The choice of the hash-join algorithm is based on the fact that
the geometry data will usually not fit in main memory and a nice partitioning
function may distribute tetrahedrons into buckets according to the path followed
by the fluid, reducing the number of IOs 5. The parallelization strategy adopted
for hash-joins considers that all instances of the join operator receive the com-
plete geometry data, so that particles distribution is independent of the hash-join
instance and can be scheduled according to node performance measures. Such
decision eliminates the restriction regarding G2N for this problem, allowing the
same scheduling function to be used during optimization. The overhead of trans-
ferring the complete geometry data to scheduled node is reduced by adopting a
multicast transfer protocol approach [23].

Another nice property of the eddy operator, not previously observed in the
literature regards its natural loop execution model. Some scientific applications,
like the SVA, require a fragment of the DQEP to be repetitively evaluated. In
our running example, the TCP query has to be run for each single iteration of
a virtual particle. The looping execution model of Eddy adapts nicely to the
repetitive evaluation of query execution plan fragments.

7 Initial Results

In this section we report on initial experimental results. We have implemented
CoDIMS-G using java 1.4.2 and globus 3.2.1 with the OGSA container. We sim-
ulated a grid environment into a cluster with 20 pentium IV, 1.7 GHz, processors
with 256 MB of RAM, running linux 2.4.20-31.9.

We used a real set of data from a SVA produced at LNCC by visualization
scientists. We considered an instance of the SVA problems with 1000 particles
and executing 25 iterations by each particle. The geometry data source comprises
71732 tetrahedrons and the velocity relation holds 25 time-instant values for each
geometry vertex. The TCP and Resulting-vector programs have been ported to
java and the spatial hash-join algorithm has been added to the QEEF framework.

We analyzed the elapsed-time of executing the query in figure 1, obtained by
increasing the number of nodes in 4 steps, from 1 node to 18 nodes, see Fig-
ure 4(b). Figures correspond to averaging the results of 10 runs in each step.
The elapsed-time considers the difference between the time instant eddy finishes
its evaluation (i.e. executes the close request) and the time it receives the open
request from query manager. Results demonstrated a speedup of 16.6 with 18
nodes. Another interesting observation is that the projection of G2N is accu-
rate. The ratio between the elapsed-time obtained during execution and the one
projected by G2N shows differences of only 0.1, which reinforces the proposed
scheduling algorithm.

Figure 4(a) presents the system throughput during execution. Each point
in the graph corresponds to the number of tuples evaluated by eddy so far (x
5 We have not yet adapted the partitioning function to benefit from data characteris-

tics, such as the fluid flow.

An Adaptive Distributed Query Processing Grid Service 55

SYSTEM RATE

0

5

10

15

20

25

1000 5000 9000 13000 17000 21000 25000

Processed Tuples

Ti
m

e
(m

s/
tu

pl
e)

Rate

SPEEDUP

0

10

20

30

40

50

60

70

80

90

100

1 6 11 18

Number of Nodes

Ti
m

e
(m

in
)

G2N

Real Cost

(a) (b)

Fig. 4. Experimental results

axe), divided by the current elapsed-time (y axe). We obtained a steady average
throughput of 4.54 tuples per second, after 1/3 tuples have been evaluated by
eddy. In fact, we observed that the initial disturb was due to one of the nodes that
took longer, 2.3 cycles, to behave as expected. More interesting is to recognize
that our system was able to recover from this initial problem and to achieve the
projected throughput.

8 Conclusion

The vision of providing transparent and automated access to and use of a large
number of heterogeneous hardware and software resources available in the in-
ternet and intranets has motivated efforts towards the development of grid en-
vironments. To this end the Global Grid Forum has supported the OGSA ar-
chitecture, based on a service-oriented technology, that addresses the need for
standardization regarding grid component discovery, access, allocation, execu-
tion, monitoring , among others.

Scientific applications are natural candidates for benefiting from a grid envi-
ronment as a result of: the large amount of data to be processed; the distribution
of scientific resources, in terms of human, hardware and software and high com-
puting power requirements.

In this paper we presented the CoDIMS-G, which is an adaptive distributed
query processing grid service. CODIMS-G offers users a transparent object-
relational view over data and programs distributed in the internet through a set
of orchestrated services.

We propose a new dynamic grid node allocation algorithm based on node
throughput, and integrate it into a simple query optimization strategy that gen-
erates initial query execution plans with annotated node scheduling policy. The
proposed query execution strategy extends eddy adaptive query execution model
for the grid environment. The combination of both, simple query optimization
with node scheduling and adaptive query execution model, offers a very con-
venient platform for query execution in a grid environment, considering the
variations on grid nodes run-time conditions and the lack of statistics from the

56 F. Porto et al.

web data-sources and the user programs execution. In addition, we use the eddy
approach to repetitively evaluate a fragment of the query plan, as required by
the iterative computation of particles trajectory. This side effect of the adoption
of the eddy operator happened to be very convenient making the choice on the
number of iterations to be transparently dealt by eddy execution control. To
the best of our knowledge, this is the first attempt to combine a dynamic node
scheduling and an adaptive query execution.

We have implemented a first version of the CoDIMS-G middleware. Our im-
plementation demonstrates a speedup of 16.6 with 18 scheduled nodes and a
steady throughput rate of 4.5 tuples per second, obtained once the system re-
covered from initial disturbs applying our adaptive strategy.

As future work, we intend to further investigate the correlation among block
size, node throughput and volume of tuples in eddy. We also plan to evaluate the
spatial hash-join algorithm, under scenarios where buckets swap are minimized
as function of the data being joined.

References

1. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An
Open Grid Services Architecture for Distributed System integration. Global Grid
Forum (2002)

2. Foster, I., Kesselman, C.: Globus a metacomputing infrastructure toolkit”. Intl.
Journal Supercomputer Applications 11 (1997) 115–128

3. Czajkowski, K., et al.: From open grid services infrastructure to wsre-
source framework: Refactoring & evolution, version 1.1. Technical report,
http://www.globus.org/wsrf/specs/ogsitowsrf1.0.pdf (2005)

4. Antonioletti, M., Atkinsons, M., et all., A.B.: The design and implementation of
grid database services in ogsa-dai. Concurrency and Computation: Practice and
Experience Journal. 17 (2005) 357–376

5. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The data grid:
Towards an architecture for the distributed management and analysis of large
scientific datasets (1999)

6. Avnur, R., Hellerstein., J.: Eddies: continuously adaptive query processing. ACM
SIGMOD Record 29 (2000) 261–272

7. Porto, F., Giraldi, G., de Oliveira, J.C., Schulze, B.: Codims - an adaptable mid-
dleware system for scientific visualization in grids. Concurrency and Computation:
Practice and Experience Journal. 16 (2004) 515–522

8. Alpdemir, M.N., Mukherjee, A., Paton, N., et al.: Ogsa-dqp: A service-based dis-
tributed query processor for the grid. In J.Cox, S., ed.: Proc. of UK e-Science All
Hands Meeting Nottingham. (2003)

9. Paton, N., Atkinson, M., Dialani, V., Pearson, D., T.Storey, P.Watson: Database
access and integration services on the grid. Technical report, U.K. National
eScience Center, www.nesc.ac.uk (2002)

10. Smith, J., Gounaris, A., Watson, P., Paton, N.W., et. al: Distributed query pro-
cessing on the grid. LNCS 2536 (2002) 279–290

11. Vadhhiyar, S.S., Dongarra, J.J.: Self adaptivity in grid environment. Concurrency
and Computation: Practice and Experience Journal. 17 (2005) 235–257

An Adaptive Distributed Query Processing Grid Service 57

12. Rosenblum, L., et al., eds.: Scientific Visualization - Advances and Challenges.
Academic Press (1994)

13. Barnard, S., et. al: Large-scale distributed computational fluid dynamics on the
information power grid using globus. (1999) 60–67

14. Molina, H., Ullman, J.D., Widow, J.D.: Database Systems: The Complete Book.
Prentice Hall (2001)

15. Lo, M.L., Ravishankar, C.V.: Spatial hash-joins. In: In Proc. of the ACM SIGMOD
Conference on Management of Data, Montreal, Canada. (1996) 247–258

16. Barbosa, A., Porto, F., Melo, R.N.: Configurable data integration middleware
system. Journal of the Brazilian Computer Society 8 (2002) 12–19

17. Selinger, P.G., Adiba, M.E.: Access path selections in distributed data base man-
agement systems. In: Proc. 1st Intl. Conf. on Databases, British Computer Society,
Aberdeen. (1980)

18. Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice
Hall International, Inc., New Jersey (1999)

19. Bouganim, L., Fabret, F., Porto, F., Valduriez., P.: Processing queries with expen-
sive functions and large objects in distributed mediator systems. In: Proceedings
of Int’l. Conf. on Data Engineering, Heidelberg, Germany (2001) 91–98

20. F. Ayres, F. Porto, R.N.M.: An extensible query execution engine for supporting
new query execution models. Technical report, EPFL, Ecole Polytechnique Fdrale
de Lausanne School of Computer and Communication Sciences, Suisse, http :
//icwww.epfl.ch/publications/documents/IC TECH REPORT 2005034.pdf
(2005)

21. Porto, F.: Strategies for the Parallel execution of user programs in scientific appli-
cations. PhD thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro, RJ, Brazil
(2001)

22. Graefe, G.: Query evaluation techniques for large databases. ACM Computing
Surveys 25 (1993) 73–170

23. Deering, S., Cheriton, D.: Multicast routing in datagram internetworks and ex-
tended lans. ACM Transactions on Computer Systems (8) 85–111

Framework for Querying Distributed Objects

Managed by a Grid Infrastructure�

Ruslan Fomkin and Tore Risch

Department of Information Technology, Uppsala University,
P.O. Box 337, SE-751 05 Uppsala, Sweden
{Ruslan.Fomkin, Tore.Risch}@it.uu.se

Abstract. Queries over scientific data often imply expensive analyses of
data requiring a lot of computational resources available in Grids. We are
developing a customizable query processor built on top of an established
Grid infrastructure, the NorduGrid middleware, and have implemented a
framework for managing long running queries in Grid environment. With
the framework the user does not specify the detailed job and paralleliza-
tion descriptions required by NorduGrid. Instead s/he specifies queries
in terms of an application-oriented schema describing contents of files
managed by the Grid and accessed through wrappers. When a query is
received by the system it generates NorduGrid job descriptions submit-
ted to NorduGrid for execution. The framework considers limitations of
NorduGrid. It includes a submission mechanism, a job babysitter, and a
generic data exchange mechanism. The submission mechanism generates
a number of jobs for parallel execution of a user query over wrapped data
files. The task of the babysitter is to submit generated jobs to NorduGrid
for the execution, to monitor their execution status, and to download re-
sults from the execution. The generic exchange mechanism provides a
way to exchange objects through files between Grid execution nodes and
user applications.

1 Introduction

Nowadays a lot of scientific data are stored in Grids. Scientists need to access and
analyze them. Their analyses often imply expensive computations that need to
process a lot of data. Thus scientists need to use external computational resources
to process their analyses, and storage resources to store and share huge amounts
of data. For this many Grids are developed to provide computational resources
and storage facilities.

For example, the ATLAS collaboration [1] motivates many Grid projects such
as LCG [2], EGEE [3], and NorduGrid [4]. These projects provide storage facili-
ties to store and share data produced by ATLAS [1] and to be produced by the
Large Hadron Collider (LHC) [5], along with computational resources to analyze
the data.
� This work is funded by The Swedish Research Council (VR) under contract 343-

2003-955.

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 58–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Framework for Querying Distributed Objects 59

A typical analysis of data for the LHC projects is selections of subsets of
the input data. The selections, called cuts, consist of not only simple logical
predicates but also numerical computations. We show that such analyses can be
expressed in a declarative way using an extensible query language.

We are developing POQSEC [6] (Parallel Object Query System for Expensive
Computations) that processes scientific analyses specified as declarative SQL-like
queries over data distributed in the Grid. It utilizes computational resources of
Swegrid [7] and storage resources of Nordic countries through the middleware
Grid infrastructure NorduGrid [4]. The goal of the POQSEC project is to provide
a transparent and scalable way to specify and execute scientific queries. A user
should be able to specify his/her query transparently in a client database without
respect to where it will be executed and how data will be accessed.

Currently we have implemented a framework for submitting user queries for
execution in the Grid. The system then creates jobs executing the queries, sub-
mits the jobs to NorduGrid, monitors execution of the jobs by NorduGrid, down-
loads results of the jobs, and delivers results of the queries to the user. The user
states queries to POQSEC in terms of a database schema available in the client
database. The schema contains both an application-oriented part and Grid meta-
data. The application schema describes data stored inside files in Grid storage
resources, for example events produced by ATLAS. Wrappers are defined for
accessing the contents of these files, e.g. in our application we use a wrapper of
the ROOT library [8]. The Grid meta-data contains information about the files.
Thus user queries can restrict data both in terms of application data contents
and meta-data about files. The latter is very important since there is a huge
amount of Grid data files and queries are normally over a small percentage of
them. User queries are parallelized to a number of jobs for execution. The par-
allelization is done by partitioning data between jobs. Our preliminary results
show that the parallelization gives significant performance improvements.

The rest of the paper is organized as follows. Related work is discussed in
Sect. 2. Section 3 describes the POQSEC architecture. It is followed by a de-
scription of an application from High Energy Physics, which is our test case. The
implementation of the framework is discussed in Sect. 5, and Sect. 6 concludes
the paper.

2 Related Work

Another system that utilizes a Grid infrastructure and provides high-level declar-
ative query language for data access and analysis is Distributed Query Processing
system (DQP) [9] or its web service version OGSA-DQP [10]. The DQP is part
of the Grid infrastructure myGrid [11], which fully controls resources and where
resources can be allocated dynamically. The resources for the query execution
are allocated and provided by a user. Any of them can be utilized by DQP
dynamically. It is different from our system where NorduGrid is a middleware
above autonomous local batch systems that control computational resources.
Unlike the DQP, we need to consider the NorduGrid limitation that jobs are not

60 R. Fomkin and T. Risch

guaranteed to start immediately. Furthermore, as part of a job description Nor-
duGrid requires to specify descriptions of resources in advance. This includes,
for example, estimating execution time and number of computational nodes for
jobs.

STORM [12] is a distributed query processing environment for processing
selections over distributed large scientific datasets and transferring the selected
data to its clients. STORM does not leverage an existing Grid infrastructure for
data transportation, job scheduling, and batch query processing as POQSEC.

In [13,14] a batch database system is developed to support scientific queries.
It is there applied on astronomical data. The data are stored in back-end SQL
servers managed by a front-end batch query system. In POQSEC we use a mid-
dleware approach to access wrapped data stored in native format rather than
storing the data in SQL databases.

ATLAS Distributed Analysis (ADA) [15] project has goal to provide high-
level interface for scientists who analyze data produced by ATLAS and LHC.
The users specify jobs containing datasets for processing in terms of meta-data
and their analyses as snippets of programming code, for example in C++ or
Fortran. A typical analysis performs selections that include computations over
input datasets and aggregations over results of the selections. The jobs are sub-
mitted to Grid resources and their execution is monitored. In contrast, POQSEC
uses a declarative high-level query language to specify analyses and the goal of
POQSEC is transparent execution without considering whether the query will
be executed on Grid resources or locally.

3 POQSEC Architecture

The architecture presented in Fig. 1 illustrates the current implementation of
POQSEC. The POQSEC architecture considers limitations of the NorduGrid
(NG) middleware. NorduGrid and its limitations are briefly described in Sect. 3.1.
Section 3.2 describes POQSEC components and its interaction with NorduGrid.

3.1 NorduGrid Middleware

NorduGrid (also called Advance Resource Connector) [4,16] is a middleware
between Grid users and computational resources that are managed by local batch
systems. Thus NorduGrid does not control computational resources; instead it
submits user tasks to local batch systems on clusters and each local batch system
allocates cluster nodes according to its policy and current load of the cluster.

The Computing Elements (CE) are clusters where Grid jobs are executed
while Storage Elements (SE) are file servers where the data to be queried are
stored. The CEs and SEs are managed by NorduGrid and are accessible by
submitting Grid jobs to an NG Client. The NG client is a set of command line
tools to submit, monitor, and manage jobs on the Grid. It also has commands
to move data between storage elements and clients, and to query Grid resource
information such as loads on different CEs and job statistics. Users of NorduGrid
always first initiate communication with the NG client.

Framework for Querying Distributed Objects 61

Fig. 1. Architecture of current implementation of POQSEC

The NG client includes a resource brokering service [17] to find suitable re-
sources for jobs. Jobs are described in a resource specification language, xRSL
[18], which includes specification of, e.g.:

– A user executable and its arguments to be run on some suitable computing
element.

– Files to be transported to and from the chosen computing element before
and after the execution.

– Maximal CPU time for the execution.
– Runtime environments for the execution. A runtime environment is an addi-

tional software package required, e.g. an application library such as ROOT
[8].

– Standard input, output, and error files for the execution.
– Optional names of the computing elements where the executable can run.
– The number of parallel sub-jobs to be run on the computing element.

62 R. Fomkin and T. Risch

In summary NorduGrid requires a lot of user specifications to fully describe
computation tasks as xRSL scripts. An example of the script is shown in Fig. 4.
POQSEC simplifies this considerably by automatically generating NorduGrid
interactions and job scripts to execute a task specified as a declarative query
of contents of data. To manage jobs generated by POQSEC, to track their ex-
ecutions, and to download results we provide a babysitter integrated with the
POQSEC framework.

3.2 POQSEC Components and Their Interaction with NorduGrid

The Query Coordinator of POQSEC (Fig. 1) manages user queries submitted
to POQSEC for execution on the Grid. It communicates with an NG client
directly through a command line interface. Both the query coordinator and the
NG client are running on the same node, the Grid Client Node, which is a
user accessible computer node. On it the user must first initialize his/her Grid
credentials required for using NG client services according to the Grid Secure
Infrastructure (GSI) [19] mechanism.

The POQSEC Client component is a personal POQSEC database running on
the Grid client node and communicating with the query coordinator. It could
also run on a separate node from the Grid client node, e.g. on a user’s desktop
computer, if GSI is used for the communication with the query coordinator.
Queries are submitted through the POQSEC client to the query coordinator for
further execution on Grid resources.

The components of the query coordinator are the Coordinator Server and the
Babysitter. The coordinator server contains a Grid Meta-Database, a Submission
Database, and a Job Queue. The Grid meta-database stores information about
data files and computational elements accessible trough POQSEC. It is needed
since Grid resources are heterogeneous and require Grid users to know the com-
putational elements that are able to execute their jobs and properties of the
computational elements required for job executions, e.g. runtime environments.
POQSEC users need not specify this information when submitting queries since
it is stored in the Grid meta-database.

The submission database contains descriptions of queries submitted from the
POQSEC client and job descriptions generated by POQSEC to execute the
queries. The job queue contains jobs that are created but not yet submitted
to NorduGrid for execution.

The process of submitting and evaluating a query is presented in Fig. 2.
When a query is received (1) from the POQSEC client the coordinator server
first registers the query in the submission database and stores there a number of
job descriptions to parallelize the query execution. The number of jobs to create
is currently provided by the user as part of the query submission1. Information
about computational resources and data files from the Grid meta-database is
used to generate these job descriptions. xRSL scripts are generated from the job
descriptions and are stored (2) in the local storage. Then the jobs are registered

1 We are working on automating this.

Framework for Querying Distributed Objects 63

Fig. 2. Interactions between POQSEC components and NorduGrid

in the job queue. The babysitter picks (3) jobs from the job queue and submits
(4) them as xRSL scripts to the NG client for execution on Grid resources. Once
a job has been submitted the babysitter regularly polls (5) the NG client for
its job status and reports (6) the status to the coordinator server to update
the submission database. When a job is finished the babysitter downloads (11)
the result to the Local Storage, which is the file system of the Grid client node,
and notifies (12) the coordinator server. The result can be retrieved (13) to the
POQSEC client after the query is finished.

On each CE NorduGrid maintains an NG Grid Manager. It receives (7) job
descriptions from NG clients. In our case these jobs are executing POQSEC sub-
queries. The NG Grid manager uploads (8) input files from SEs to the local CE
Storage before each job is submitted to the local batch system. The local batch
system allocates CE nodes for each job according its policies and current load,
and then starts the job executions. For POQSEC these jobs contain Executors
that evaluate (9) subqueries over uploaded data and store (10) the results in lo-
cal CE storage files. The babysitter polls (5) the NG client regularly for finished
executions. After a job has finished the babysitter requests (11) the NG client to
download (11) the result to the local storage of the Grid client node and notifies
(12) the coordinator server that the job is ready. Since a given POQSEC query
often generates many jobs a query is ready only when all its jobs are finished.
However, partial results can be obtained once some jobs are finished.

4 User Application

Our current test application is an application for analyzing data produced by
LHC projects for containing charged Higgs bosons [20].

Input data for the analyses are events, which describe collision events between
elementary particles. Each event comprises sets of particles of various types such
as electrons, muons, sets of other particles called jets, and sets of event param-
eters such as missing momentum in x and y directions (PxMiss and PyMiss).
Each particle is described by its own set of parameters, e.g., the ID-number of
the type of a particle (Kf), momentum in x, y, and z directions (Px, Py, and
Pz), and amount of energy (Ee). The data are stored in files managed by an
object-oriented data analysis framework, ROOT [8].

64 R. Fomkin and T. Risch

Fig. 3. The schema of the application data

Analysis of events consists of selecting those events that can potentially con-
tain the charged Higgs bosons. A number of predicates, called cuts, are applied to
each event and if the event satisfies all of them it is selected. A cut is a selection
of events of interest for further analysis according to a scientist’s theory.

The application is implemented as an extension of a functional and object-
oriented mediator system Amos II [21]. It is called ALEH (Analysis LHC Events
for containing charged Higgs bosons). ALEH has a ROOT wrapper to access
data from files managed by ROOT. An object-relational schema of the event
data is defined in Fig. 3. It is a view of relevant parts of ROOT files.

A number of analysis queries implementing cuts are defined as derived func-
tions expressed in a query language, AmosQL [22]. Often a researcher selects
events satisfying several cuts. For example, such query in AmosQL is:

SELECT ev
FROM Event ev
WHERE jetvetocut(ev) AND zvetocut(ev) AND

topcut(ev) AND misseecuts(ev) AND
leptoncuts(ev) AND threeleptoncut(ev);

The query is expressed in terms of derived functions, which define the cuts.
The definition of one of the cuts in AmosQL is:

CREATE FUNCTION zvetocut (Event ev) -> Event AS
SELECT ev
WHERE NOTANY(oppositeleptons(ev)) OR

(abs(invMass(oppositeLeptons(ev)) - zMass) >= minZMass)

where invMass calculates the invariant mass of a pair of two given leptons, zMass
is the mass of a Z particle, minZMass is range of closeness, and oppositeLeptons
is a derived function defined as another query:

CREATE FUNCTION oppositeLeptons (Event ev) -> <Lepton, Lepton> AS
SELECT l1, l2
FROM Lepton l1, Lepton l2

Framework for Querying Distributed Objects 65

WHERE l1 = particles(ev) AND l2 = particles(ev) AND
Kf(l1) = -Kf(l2);

5 Implementation

A POQSEC client running our test application ALEH has an interface to a
coordinator server through which a user can submit queries for execution in the
Grid. It can monitor the status of submitted queries, and can retrieve results of
finished queries. To submit a query the user invokes a system interface function
named submit and specifies there the query defined in terms of the application
schema, set of file names which should be processed by the query, number of
jobs for parallelization the query, CPU time required for processing one job, and
optionally a computing element where the query’s jobs should be executed. If no
computing element is specified the jobs will be submitted to an NG client along
with a list of possible computing elements for execution. The result of the submit
function is an object used to monitor the status and to retrieve the result.

The test data, which are events, are produced by ATLAS simulation software
and stored on storage recourses accessible through NorduGrid. Paths to the data
files are stored in the Grid meta-database of the coordinator server in a format
according to xRSL specification [18]. Thus the user provides file names without
paths during submission.

For example, the user wants to execute the general analyzing query presented
in Sect. 4 over eight specific files containing equal number of events, with paral-
lelization in four jobs that each job will process two files, where the CPU time of
executing the query over the two files is 20 minutes, on any of available compu-
tational resources of Swegrid. The user submits the query and assigns the result
of the submission to a variable :s:

SET :s = submit("SELECT ev FROM Event ev WHERE jetvetocut(ev) AND
zvetocut(ev) AND topcut(ev) AND misseecuts(ev) AND leptoncuts(ev)
AND threeleptoncut(ev)",{"bkg2Events_ruslan_000.root",
"bkg2Events_ruslan_001.root","bkg2Events_ruslan_002.root",
"bkg2Events_ruslan_003.root","bkg2Events_ruslan_004.root",
"bkg2Events_ruslan_005.root","bkg2Events_ruslan_006.root",
"bkg2Events_ruslan_007.root"},4,20);

The submission is then translated into four xRSL scripts, which are submitted
to aNGclient for execution.One of the scripts is presented inFig. 4.The executable
there is the ALEH application, which contains the wrapper of ROOT files.

It is necessary for the user to specify which files to analyze to restrict amount of
data for processing. In the example the user specifies file names explicitly. Alterna-
tively the user can define a query over the meta-database of the coordinator server
to retrieve the file names. The local batch systems of all computational elements
available through NorduGrid require specification of CPU time and thus the user
needs to provide this2.
2 We are working to estimate this automatically.

66 R. Fomkin and T. Risch

& (executable=aleh)

(arguments="aleh.dmp")

(inputfiles= (aleh "/home/udbl/ruslan/Amox/bin/aleh")

(aleh.dmp "/home/udbl/ruslan/Amox/bin/aleh.dmp")

(query2005420103329443.osql "query2005420103329443.osql")

(bkg2Events_ruslan_001.root "gsiftp://se1.hpc2n.umu.se:2811/

se3/ruslan_poqsec/bkg2Events_ruslan_001.root")

(bkg2Events_ruslan_000.root "gsiftp://se1.hpc2n.umu.se:2811/

se3/ruslan_poqsec/bkg2Events_ruslan_000.root"))

(outputfiles=(result.out ""))

(cputime=20)

(| (runtimeenvironment=ROOT-3.10.02)

(runtimeenvironment=APPS/HEP/ATLAS-8.0.8)

(runtimeenvironment=APPS/PHYSICS/HEP/ROOT-3.10.02)

(runtimeenvironment=ATLAS-8.0.8)

(runtimeenvironment=APPS/HEP/ATLAS-9.0.3))

(stdin="query2005420103329443.osql")

(stdout="outGen.out")

(stderr="errGen.err")

(gmlog="grid.debug")

(middleware>="nordugrid")

(| (cluster=sg-access.pdc.kth.se) (cluster=bluesmoke.nsc.liu.se)

(cluster=hagrid.it.uu.se) (cluster=hive.unicc.chalmers.se)

(cluster=ingrid.hpc2n.umu.se) (cluster=sigrid.lunarc.lu.se))

(jobName="POQSEC: swegrid2005420103329444.xrsl")

Fig. 4. Example of the xRSL file with name swegrid2005420103329444.xrsl

The performance of many queries can be significantly improved by paralleliza-
tion into several jobs. Our experience shows that parallelization of executing a
query gives dramatic improvements. For example, the above submission took 24
minutes. The time was calculated as the elapsed time between when the query was
submitted until all job results were downloaded from the Grid. A submission of the
same query without parallelization as one job took 3 hours and 45 minutes, where
3 hours and 10 minutes were spent for the query evaluation. It is much longer re-
sponse time compared with the parallelized Grid execution.

During execution of a query submitted to POQSEC the user can monitor its
status by calling status(:s). The status of the query is computed from its batch
jobs statuses. The status ”DOWNLOADED” will be returned only if results of all
jobs of the query were downloaded. Then the user can retrieve the result data by
executing retrieve(:s). The result of the query can be retrieved also by using
the function wait(:s). The difference is that if wait is invoked before the result of
the jobs is available the system waits until the coordinator server notifies it that all
jobs are downloaded. Then it retrieves the result while retrieve will just print a
message if the query is not finished3. The user can cancel his/her query submission
by executing cancel(:s).

3 We are implementing functions to retrieve partial results.

Framework for Querying Distributed Objects 67

Fig. 5. Schema of the Grid meta-database and the submission database

The coordinator server, the babysitter, and the NG client are running on the
same Grid client node as the POQSEC client. The coordinator server contains the
Grid meta-database and the submission database. The user is able to query the
coordinator server for data from the Grid meta-database and to request updates
of the Grid meta-database through the POQSEC client. The babysitter polls the
coordinator server to pick up jobs from the job queue and to request updates of the
submission database.

A schema of the Grid meta-database and the submission database is presented
in Fig. 5. The types Cluster and DataFile and its subtype EventData are parts
of the Grid meta-database. The submission database is presented by the types
Submission and Job.

When the coordinator server receives query submissions from the POQSEC
client it generates job descriptions and creates xRSL files for NorduGrid and script
files for POQSEC executors. For example, for the submission given above the co-
ordinator server generates four xRSL files and four script files. Example of one of
the xRSL file is given in Fig. 4. The POQSEC script files contain commands for
executors to load the input data from the data files through the ROOT wrapper
and to execute the user query. In our example one of the script files contains:

load_root_file("bkg2Events_ruslan_001.root");
load_root_file("bkg2Events_ruslan_000.root");
save("result.out",SELECT ev FROM Event ev WHERE jetvetocut(ev)
AND zvetocut(ev) AND topcut(ev) AND misseecuts(ev) AND
leptoncuts(ev) AND threeleptoncut(ev));

68 R. Fomkin and T. Risch

The results of the query executions are saved by the executors in files (here in
result.out) in a way that they can be read by the POQSEC client. Objects, in
our case events, which originally were the same, will be treated by the POQSEC
client as the same object regardless of that they came from different sources.

The other three xRSL files and three script files are similar except that they have
different input data files. Automatic generation of the files by POQSEC exempts
the user from manually creating such files for each job.

The main purposes of the babysitter is to interact with the NG client to submit
jobs, to monitor status of executing jobs, and to download finished jobs. Each in-
teraction with the NG client can take from several seconds to a minute; thus the
coordinator server does not contact the babysitter immediately when a job is cre-
ated. Instead the babysitter polls the coordinator server regularly when it is not
interacting with the NG client.

6 Conclusion and Future Work

We have implemented a framework which provides basic tools for executing long
running batch queries on Grid resources overwrapped scientific data distributed in
the Grid. The framework is a part of our development of POQSEC(ParallelObject
Query System for Expensive Computations), the goal of which is to provide a fully
transparent query execution system for scientific applications.

Our on-going work is to automate estimates of maximal CPU time required for
the execution of an arbitrary query on a partition of input data. The estimates will
be based on probing the query on a number of small samples. We also investigate
strategies for suspending those jobs for which the maximal CPU time were under-
estimated, and then resuming them on other resources.

Another on-going work considers automatic parallelization of a user query sub-
mitted for execution on the Grid resources. To decide automatically how many
jobs to parallelize the query into depends on the current load of computational
resources of the Grid and which computational elements would be chosen for the
execution of the generated jobs. We combine this together with development of our
own resource brokering algorithm. The resource brokering algorithm will not just
decide where to execute the query but also to how many jobs parallelize the query.
It should take in account that different computing elements of the Grid have differ-
ent policies. We will base our resource broker algorithm on job statistics available
from the NorduGrid middleware [23].

Job execution on computational resources accessible through NorduGrid can
fail and users of NorduGrid need to deal with failures. We are investigating various
strategies to deal with failures of job executions.

References

1. ATLAS collaboration. http://atlas.web.cern.ch/Atlas/internal/Welcome.html
2. LHC Computing Grid. http://lcg.web.cern.ch/lcg/
3. EGEE: Enabling Grids for E-sciencE.

http://egee-intranet.web.cern.ch/egee-intranet/gateway.html

Framework for Querying Distributed Objects 69

4. Eerola, P., Ekelöf, T., Ellert, M., Hansen, J.R., Konstantinov, A., Kónya, B., Nielsen,
J.L., Ould-Saada, F., Smirnova, O., Wäänänen, A.: Science on NorduGrid. In Neit-
taanmäki, P., Rossi, T., Korotov, S., Oñate, E., Périaux, J., Knörzer, D., eds.: EC-
COMAS 2004. (2004) See also http://www.nordugrid.org.

5. LHC - the Large Hadron Collider.
http://lhc-new-homepage.web.cern.ch/lhc-new-homepage/

6. Fomkin, R., Risch, T.: Managing long running queries in Grid environment. In
Meersman, R., Tari, Z., Corsaro, A., eds.: OTM Workshops. LNCS 3292, Springer
(2004) 99–110

7. Swegrid. http://www.swegrid.se
8. Brun, R., Rademakers, F.: ROOT - an object oriented data analysis framework. In:

AIHENP’96 Workshop. Nucl. Inst. & Meth. in Phys. Res. A 389 (1997) 81–86 See
also http://root.cern.ch.

9. Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou,
R.: Distributed query processing on the Grid. In Parashar, M., ed.: GRID. LNCS
2536, Springer (2002) 279–290

10. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Watson, P., Fernan-
des, A.A.A., Fitzgerald, D.J.: OGSA-DQP: A service for distributed querying on
the Grid. In Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E., eds.: EDBT. LNCS 2992, Springer (2004)
858–861

11. myGrid. http://www.mygrid.org.uk
12. Narayanan, S., Kurç, T.M., Çatalyürek, Ü.V., Saltz, J.H.: Database support for

data-driven scientific applications in the grid. Parallel Processing Letters 13 (2003)
245–271. See also http://storm.bmi.ohio-state.edu.

13. Nieto-Santisteban, M.A., Gray, J., Szalay, A.S., Annis, J., Thakar, A.R., O’Mullane,
W.: When database systems meet the Grid. In: CIDR. (2005) 154–161

14. O’Mullane, W., Li, N., Nieto-Santisteban, M.A., Szalay, A.S., Thakar, A.R., Gray,
J.: Batch is back: CasJobs, serving multi-TB data on the Web. Technical Report
MSR-TR-2005-19, Microsoft Research (2005)

15. Adams, D., Deng, W., Chetan, N., Kannan, C., Sambamurthy, V., Harrison, K.,
Tan, C., Soroko, A., Liko, D., Orellana, F., Branco, M., Haeberli, C., Albrand, S.,
Fulachier, J., Lozano, J., Fassi, F., Rybkine, G.: ATLAS distributed analysis. In:
CHEP04. (2004)

16. The NorduGrid/ARC User Guide. (2005) Available at
http://www.nordugrid.org/documents/userguide.pdf.

17. Ellert, M.: The NorduGrid brokering algorithm (2004) Available at
http://www.nordugrid.org/documents/brokering.pdf.

18. Smirnova, O.: Extended Resource Specification Language Reference Manual. (2005)
Available at http://www.nordugrid.org/documents/xrsl.pdf.

19. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J.,
Kesselman, C., Meder, S., Pearlman, L., Tuecke, S.: Security for Grid ser-
vices. In: HPDC’03, IEEE Computer Society (2003) 48–57. See also http://www-
unix.globus.org/toolkit/docs/3.2/gsi/.

20. Hansen, C., Gollub, N., Assmagan, K., Ekelöf, T.: Discovery potential for a charged
Higgs boson decaying in the chargino-neutralino channel of the ATLAS detector at
the LHC. SN-ATLAS-2005-050 (2005)

21. Risch, T., Josifovski, V., Katchaounov, T.: Functional data integration in a dis-
tributed mediator system. In: The Functional Approach to Data Management: Mod-
eling, Analyzing, and Integrating Heterogeneous Data. SpringerVerlag (2003)

70 R. Fomkin and T. Risch

22. Flodin, S., Hansson, M., Josifovski, V., Katchaounov, T., Risch, T., Skold, M.: Amos
II Release 7 User’s Manual. Uppsala Database Laboratory. (2005) Available at
http://user.it.uu.se/~udbl/amos/doc/amos users guide.html.

23. Konstantinov, A.: The Logger Service, Functionality Description and Installation
Manual. (2005) Available at http://www.nordugrid.org/documents/Logger.pdf.

An Outline of the Global Grid Forum Data

Access and Integration Service Specifications

Mario Antonioletti1, Amy Krause1, and Norman W. Paton2

1 EPCC, University of Edinburgh, JCMB, The King’s Buildings,
Mayfield Road, Edinburgh EH9 3JZ, UK

2 School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

Abstract. Grid computing concerns itself with building the infrastruc-
ture to facilitate the sharing of computational and data resources to en-
able collaboration within virtual organisations. The Global Grid Forum
(GGF) provides a framework for users, developers and vendors to come
together to develop standards to ensure interoperability between middle-
ware from different service providers. Central to this effort is the Open
Grid Services Architecture (OGSA), and its associated specifications.
These define consistent interfaces, generally couched as web services,
and the components required to construct grid infrastructures. Both the
web service and grid communities stand to benefit from the provision
of consistent and agreed web service interfaces for data resources and
the systems that manage them. This paper describes, motivates and
presents the context for the work that has been undertaken by the GGF
Data Access and Integration Services Working Group (DAIS-WG). The
group has defined a set of data access and integration interfaces that are
consistent with the OGSA vision. A brief overview of the current family
of DAIS specifications is given: WS-DAI specifies a collection of generic
data resource properties and messages that are specialised by WS-DAIR
and WS-DAIX for use with relational and XML data resources, respec-
tively. The WS-DAI specifications can be applied in regular web services
environments or as part of a grid fabric.

Keywords: Data, Databases, Grid, DAIS, OGSA-DAI.

1 Introduction

The Database Access and Integration Services Working Group (DAIS-WG) was
formed within the Global Grid Forum (GGF) to standardise service types and
interfaces to allow databases to be seamlessly integrated into grids. From the
very beginning the DAIS-WG has aligned itself with the GGF’s Open Grid Ser-
vices Architecture (OGSA)[OGSA] vision. The DAIS specifications would then
be consistent with and be able to interoperate with the other services and in-
terfaces being proposed for OGSA based grids. The group has in addition been
in communication with other standardisation groups, both inside and outside
the GGF, to ensure consistency with adjacent standardisation activities. For

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 71–84, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

72 M. Antonioletti, A. Krause, and N.W. Paton

example, DAIS members are active in the refinement of the GGF OGSA data
architecture1, and outside the GGF, the group has provided use cases for the
OASIS Web Services Resource Framework (WSRF) technical committee that is
producing standards for identifying and interacting with resources in web ser-
vices. The group has also worked with the Distributed Management Task Force
(DMTF) to extend its Common Information Model (CIM) with an XML ren-
dering of the CIM model that includes relational metadata.

The primary outcome of the DAIS-WG has been a collection of specifications:

1. WS-DAI, which defines properties and message patterns that are indepen-
dent of the type of data resource that is being accessed [WS-DAI].

2. WS-DAIR, which extends WS-DAI with properties and messages for access-
ing relational data resources [WS-DAIR].

3. WS-DAIX, which extends WS-DAI with properties and messages for access-
ing XML data resources [WS-DAIX].

This paper describes these services, outlining design decisions that have in-
fluenced their scope and relationships to existing and emerging standards. The
paper is structured as follows. Section 2 describes and motivates the scope of the
specifications, and describes how the specifications relate to other web service
standards. Section 3 provides an overview of the specifications, which is ex-
panded on in Sections 4. Section 5 describes how the specifications make use of
the Web Services Resource Framework, a family of specifications for representing
resources in web services. Section 6 presents some conclusions.

2 Scope and Context

In common with most other standardisation activities, the DAIS-WG has iter-
ated towards stable positions on what should be included in the standards and
how these capabilities should be supported. This section reviews several design
decisions, with a view to clarifying the role of the DAIS specifications in relation
to other web and grid service standards.

2.1 Transparency

Distributed data management is associated with various forms of transparency,
which may or may not be supported by an infrastructure. For example, [Ozsu-99]
includes the provision of language, fragmentation and replication transparencies
as important functionalities that a data management infrastructure may sup-
port. The key design feature behind the DAIS specifications that affects their
relationship to such transparencies is that they are designed to provide access to
existing data management systems. As such, the DAIS specifications are silent
with respect to both fragmentation and replication transparencies; the specifi-
cations can be used to access database management systems that support such

1 See http://forge.gridforum.org/projects/ogsa-d-wg for more details.

An Outline of the GGF Data Access and Integration Service Specifications 73

transparencies or not, but this need not be the concern of the implementer of
the specification, and does not surface in the specifications themselves.

A similar position holds with respect to language transparency. Many opera-
tions in the DAIS specifications take query language statements as parameters.
Such operations are generally explicit about the language that is to be used, but
DAIS does not require that service implementers parse such language expres-
sions. As such, the DAIS specifications essentially provide web service wrappers
for databases; such wrappers will typically pass query language statements di-
rectly to an underlying database management system, but are at liberty to in-
tercept, parse, translate or redirect such language statements – DAIS compliant
services may implement thin or thick wrappers. As such, the specifications have
dependencies on existing query language standards, but are not prescriptive with
respect to how a service processes statements provided in such standards.

2.2 Request Composition

Requirements analyses conducted by the DAIS-WG [Atkinson-03] indicated that
there was significant demand for services that not only accessed data resources,
but which supported flexible data movement and transformation capabilities. For
example, there was a widespread need for the ability to express a request that
could retrieve data from a database, transform the data using XSLT, and deliver
the result to a third party. The DAIS-WG designed simple language interfaces
to support such requirements, which formed the basis for the activity model
in the widely-used OGSA-DAI system [Antonioletti-05]. However, defining the
scope and role of such a language in relation to emerging workflow specifica-
tions proved problematic, and the current DAIS specifications support a more
limited collection of access patterns that provide extensibility points for more
sophisticated data transformation or movement functionalities.

2.3 Metadata

Data access services may have to be able to be discovered and used on the basis
of the metadata provided by the services. As such, the DAIS specifications pro-
vide a wide range of properties that can be used to describe the behaviour of a
service to its consumers. One significant issue for the group has been the pro-
vision of an XML Schema for describing the structure of a relational database;
such a schema is a complex artifact, which is potentially of use in settings other
than DAIS services. As such, the DAIS-WG is working with the Database Work-
ing Group of the DMTF to extend the coverage of the CIM database model to
include relational metadata from the SQL standard. In parallel with this mod-
elling activity, the DMTF is working to support an XML representation of the
complete CIM model, which should be usable by several GGF working groups
to describe the properties of resources on a grid.

2.4 Transactions and Security

Web services specifications, such as web services security [WS-Security] and web
services atomic transaction [WS-AtomicTransaction] can be used to specify the

74 M. Antonioletti, A. Krause, and N.W. Paton

security and transaction contexts for a DAIS message. As a result, the DAIS
specifications do not provide messages or properties addressing such capabilities.
Unfortunately, at the time of writing there are competing proposals for web
service transaction standards, and thus the DAIS specifications are likely to
complete their standardisation process before there is a widely accepted standard
for combining DAIS messages into transactions.

3 Specifications Overview

Before proceeding some DAIS terminology used in the remainder of this paper
is outlined. A data resource is any entity that can act as a source or sink of
data. Data resources may be further sub-classified into: externally managed data
resources which exist independently of DAIS services and have their lifetime
managed by means outside the control of the service, and service managed data
resources which do not normally exist outside the service-oriented middleware
and whose lifetime is controlled by the service. Thus, a database in a DBMS
system will normally be in the externally managed data resource category while
data stored in memory by a service, which may have been derived from an
externally managed data resource, and is accessed via a service will generally be
in the service managed data resource category.

A data resource must always have an identifier, an abstract name, which
is unique and persistent. There is currently an on-going effort to standardise
naming of entities within OGSA; for now DAIS uses a URI to represent data
resource’s abstract names. A DAIS service that provides access to a data resource
is called a data service – a data service may represent zero or more data resource.
The data resource to which a message is targeted at, through a data service, is
specified by the provision of the data resource’s abstract name in the body
of the SOAP message, optionally also including a data resource address in the
header of the SOAP message. A data resource address is an End Point Reference
(EPR) as defined in WS-Addressing [WS-Addressing] which also contains the
abstract name of the data resource in its reference parameters. DAIS mandates
the inclusion of the data resource’s abstract name in the body of the message so
that the messaging framework is the same regardless of whether WSRF is used
or not. A consumer is an application that exploits a data service to access a
data resource.

Two main types of access pattern have been proposed within DAIS. These
are represented schematically in Figure 1. Direct access mimics the standard
request-response pattern currently employed in most web service interactions.

Indirect access uses the factory pattern to create a derived data resource
located at the service end. Thus, any data resulting from a consumer-service
interaction is not returned to the consumer in the response, as is the case for
direct access. Instead, the consumer receives an EPR which can then be used to
access the data via a data service. This data service could support a different
service interface from the service that created the data resource. This avoids
unnecessary data movement and could, in effect, be used as an indirect form of

An Outline of the GGF Data Access and Integration Service Specifications 75

Fig. 1. Direct and Indirect access – the numbering indicates the temporal ordering of
the interactions with the corresponding consumers

third party delivery as is illustrated in the picture where the EPR is passed to
a second consumer which then pulls the data from the second data service.

The DAIS specifications classifies its interfaces into types originally proposed
in the OGSA Data Services [OGSA-Data] document:

Data description contains a set of properties – XML elements collected to-
gether in a property document – that provide metadata about the under-
lying data resource and the relationship between the data resource and the
data service with which it is associated. Some of these properties are static
and are thus informational while others may be changed and may thus affect
the behaviour of the service.

Data access collects a set of operations that provide access to a data resource
through a data service. These operations implement the direct data access
pattern.

Data factory collects together a set of operations that can be used to create
derived data resources. These also provide mechanisms to specify the data
service interfaces which are to be used to access the data. These operations
implement the indirect data access pattern.

Data management was originally also included in this interface classification.
However, a management interface could be used to manage: the web service,
the data resource through the web service or the relationship between the web
service and its associated data resource. The first two types of management were
deemed to be out of scope for DAIS as the general management of or through
web services is of wider interest than just to the DAIS community. Moreover, the
OASIS DMTF TC has provided a set of standards to manage web services and
manage entities through web services [MOWS, MUWS]. The DAIS specifications
then only provide a limited means for managing the relationship between a data
service and its data resource. The next sections consider the specifications in
more detail, concentrating on the core messages and properties in the WS-DAI
specification together with its WS-DAIR extensions. The principles employed
for extending the core interfaces and properties to cater for XML based data
resources are very similar and are not covered in this paper – for details see
[WS-DAIX].

76 M. Antonioletti, A. Krause, and N.W. Paton

4 WS-DAI and WS-DAIR

4.1 Message Patterns

The WS-DAI specification defines a set of core properties and operations that
are independent of any particular data model used by a data resource. These are
then extended by realisations to cater for particular types of data resource. The
WS-DAIR and WS-DAIX specifications extend the operations and properties
defined in the core document to provide access to XML and relational data
resources respectively. The core specifications also provides a set of message
patterns that must be observed by realisations. This ensures that DAIS as a
whole has a coherent framework. To date most of the effort has been spent in
producing realisation for XML and relational data resources although there are
preliminary drafts of documents that aim to extend the base DAIS interfaces to
deal with object databases and files.

Figure 2 illustrates the message pattern prescribed by the WS-DAI document
that is to be used for direct data access interfaces. Note that this is only an
illustrative example, for the actual details you should refer to the corresponding
specifications. For each of these templates a relational example of its implemen-
tation is also shown.

The contents shown in this figure are intended to go in the body of a SOAP
message. The DataResourceAbstractName identifies the data resource the mes-
sage is targeting and the DataFormatURI specifies the format in which the data
should be returned to the consumer. Valid return formats are specified in one or
more DatasetMap properties set by the service (see later). The query expression
is found at the bottom of the message. It is also possible to include parameterised
queries with a list of parameters contained in the same request message though
this is not shown in this figure. If the query is successful the data is returned to
the consumer in the response message. Note that the SQL realisation extends

Fig. 2. The DAIS direct data access pattern specified in the core spec and its imple-
mentation in the relational specification

An Outline of the GGF Data Access and Integration Service Specifications 77

Fig. 3. The DAIS indirect data access pattern specified in the core spec and its imple-
mentation in the relational specification

the message pattern to also include information from the SQL communication
area.

Figure 3 contains the corresponding message pattern set by the WS-DAI
specification for indirect data access together with a WS-DAIR realisation im-
plementation of this pattern.

The request message contains the mandatory data resource abstract name
and an optional element containing the QName of the port type with which a
data service will provide access to the resulting data. A configuration document
allows default values to be set for some of the properties of that data service
(values for this are not shown in the figure but the corresponding properties are
described in the next Section). The request message contains the query that will
populate the resulting data resource. If the query is successful the consumer gets
the EPR from which the data may be retrieved.

4.2 Service Properties

Figure 4 shows the properties defined in the WS-DAI specification and the exten-
sions made in the WS-DAIR specification. The different SQL extension groupings
reflect the possible service interfaces that can be used to access different types
of relational data. The names used for the WS-DAI properties largely describe
their purpose. A cursory review is given here but details are left to the WS-DAI
specification. Properties can be divided into two general classes: static proper-
ties which are largely defined by the implementation and cannot be modified
and configurable properties that may be set by the consumer when they create
a data resource using the indirect data access pattern.

The static properties shown in Figure 4: the DataResourceAbstractName
property provides a place holder for the unique and persistent name of the

78 M. Antonioletti, A. Krause, and N.W. Paton

Fig. 4. The core properties defined in the WS-DAI specification and the different ex-
tensions to these in the WS-DAIR specification

data resource; the ParentDataResource property contains the parent’s data re-
source abstract name if this is a derived data resource otherwise it is empty; the
DataResourceManagement property indicates whether the data resource is exter-
nally or service managed; the ConcurrentAccess property is a boolean indicat-
ing whether the data service supports concurrent access or not; the DatasetMap
property provides a means of specifying the valid return formats supported by
a data service, there will be one of these elements for each possible supported
return type; the ConfigurationMap property associates an incoming message
type with a valid requested access interface type and a default set of values for
the configuration property document; finally the GenericQueryLanguage prop-
erty specifies the valid query languages that can be used with the generic query
operation defined in the core spec (see below).

The configurable properties can be set when a new data service-data resource
relationship is established: the DataResourceDescription allows a human read-
able description of the data resource to be provided; Readable is a boolean in-
dicating whether the data resource can be read by the consumer; the Writeable
property is another boolean indicating whether the data resource can be writ-
ten to; the TransactionInitiation property enumerates the possible transac-
tional support provided by the service on the arrival of a message – possibilities
are: there is no transactional support, an atomic transaction is initiated on the
arrival of each message or the message corresponds to a transactional context
which is under the control of the consumer; the TransactionIsolationproperty
enumerates behaviour of how transactions behave in relation to other on-going
transactions, details are left to the specification; finally the Sensitivity prop-
erty describes how sensitive the derived data is to changes in the values of the
parent data resource, i.e. whether changes in the parent data resource will be
reflected in the derived data or not.

The relational extensions to these base properties are largely self explanatory
and are not described here other than for the CIMDescription property which
is a content holder for an XML rendering of CIM for relational database that is

An Outline of the GGF Data Access and Integration Service Specifications 79

being produced by the DMTF. This will be used by DAIS to provide metadata
about the relational data resource. The details of these properties are available
in the WS-DAIR specification.

It is perhaps more illustrative to examine the use case represented in Figure 5.

Data Service 3

Data Service 2

Data Service 1

Consumer 1

SQLRowset

WebRowset

SQLAccessDescription

Consumer 2

Consumer 3

SQLAccessFactory

SQLResponseDescription

SQLResponseFactory

SQLRowsetDescription

SQLRowsetAccess

SQLExecuteFactory(
SQLExecuteFactoryRequest(
DataResourceAbstractName
PortTypeQName,
ConfigurationDocument,
SQLExpression))

SQLExecuteFactoryResponse(
Reference((SQLResponseAccess))

SQLRowsetFactory(
SQLRowsetFactoryRequest(
DataResourceAbstractName,
PortTypeQName,
ConfigurationDocument,
Count))

SQLRowsetFactoryResponse(
Reference(SQLRowsetAccess))

GetTuples(GetTuplesRequest(
DataREsourceAbstractName,
StartPosition,
Count))

GetTuplesResponse(SQLResponse(
SQLRowset,
SQLCommunicationArea))

Fig. 5. Example of relational data services

In this example Data Service 1 is associated with a relational data resource.
Consumer 1 sends a message to the service’s SQLExecuteFactory operation to
create a data resource, populate it with the result set returned from the query
sent to the relational data resource and associate this data resource with a data
service, Data Service 2, that supports an SQLResponseFactory interface. The
response returned to Consumer 1 contains the EPR required to access this data.
Consumer 1 passes the EPR to Consumer 2 which then sends a message to this
data service’s SQLResponseFactory interface to create another data resource
which uses a web row set format and is associated with a data service, Data
Service 3, that supports an SQLRowsetAccess interface. Consumer 2 then gets
an EPR which he passes on to Consumer 3. Consumer 3 then finally uses the
SQLRowAccess to pull the data off the service. This example shows how the
different hierarchies of services can be used to access different types of relational
data and the context in which the relational property extensions may be used
although this has not been shown in this example. Different consumers have

80 M. Antonioletti, A. Krause, and N.W. Paton

been used to indicate the versatility of the pattern though in practise these
will generally be the same entity. Clearly it is not necessary to go through all
the steps to get a web row set data resource – all that would be required is
for Data Service 1 to support the SQLResponseFactory interface for this to
happen. Finally, in this instance the first data resource would correspond to an
externally managed data resource while the other two derived data resources
would be service managed data resources.

4.3 Operations

To conclude this section a brief overview of the operations defined in the WS-DAI
specification and the extensions made in the WS-DAIR specification is given.
These are illustrated in Figure 6. The WS-DAI specification only defines three
core data access operations. There is a DestroyDataResource operation that de-
stroys the relationship between the data service and the data resource. Once this
is done the service will no longer have any knowledge of that data resource and
will not be able to provide access to it. What this entails for the data held in that
data resource is dependent on whether it is an externally managed data resource
in which case the data will probably remain in place or, if it is a service managed
data resource, in which case the data should be removed once the relationship is
terminated. The GenericQuery allows a query expression to be submitted to the
underlying data resource without having to use one of the specialised interfaces.
Valid query languages are advertised in the GenericQueryLanguage property
previously described. A GetDataResourcePropertyDocument allows the whole
property document for WS-DAI defined properties in that data service to be re-
trieved. Properties within this property document cannot be obtained at a lower
level of granularity unless WSRF is used (see the next section).

The CoreResourceList is an optional set of operations that may be imple-
mented by a DAIS service. If this is implemented, the list of data resources
known to a data service may be retrieved using the GetResourceList opera-
tion. Also, the EPR corresponding to a data resource’s abstract name may be
retrieved using the Resolve operation.

The relational extensions to the core defined operations have a base SQLAccess
interface that allows SQL expressions to be submitted to a relational data re-
source, the results of which will be returned in the response, and an operation to
retrieve the SQLPropertyDocumentwhich contains metadata about the relational
data resource, the data service, and the data service-data resource relationship.
A SQLFactory interface allows a service managed data resource to be created
and populated by the response of a SQL query. The data resource is then asso-
ciated with an appropriate data service supporting an access interface requested
by the consumer. This could use the ResponseAccess collection of operations
which allow the data to be retrieved as well as finding out about the nature of
the response. Likewise, a ResponseFactory allows a rowset based data resource
to be created that can, in turn, be accessed by using the RowsetAccess set of
operations. These then are the extensions to the core operations defined in the
WS-DAIR specification to cater for relational data resources.

An Outline of the GGF Data Access and Integration Service Specifications 81

CoreResourceList
(WS-DAI)

+GetResourceList()

+Resolve()

CoreDataAccess
(WS-DAI)

+DestroyDataResource()

+GenericQuery()

+GetDataResourcePropertyDocument()

ResponseFactory
(WS-DAIR)

+GetSQLRowsetFactory()

SQLAccess
(WS-DAIR)

+GetSQLPropertyDocument()

+SQLExecute()

SQLFactory
(WS-DAIR)

+SQLExecuteFactory()

RowsetAccess
(WS-DAIR)

+GetRowsetPropertyDocument()

+GetTuples()

ResponseAccess
(WS-DAIR)

+GetSQLCommunicationArea()

+GetSQLOutputParameter()

+GetSQLResponseItem()

+GetSQLResponsePropertyDocument()

+GetSQLReturnValue()

+GetSQLRowset()

+GetSQLUpdateCount()

Fig. 6. Operations defined in the WS-DAI specifications and the extensions made in
the WS-DAIR specification

Only the core and relational properties and interfaces have been outlined here.
The XML extensions follow the same principles and provide support for query-
ing XML data resources using XQuery, XPath, XUpdate as well as operations
that manipulate collections and others that provide access to service managed
data resources, details are in the WS-DAI specification [WS-DAIX]. It is worth
noting that DAIS does not prescribe how these operations are to be combined to
form services; the proposed interfaces may be used in isolation or in conjunction
with others and, in time, viable compositions of interfaces will follow established
patterns for data access.

5 DAIS and WSRF

The core functionality of DAIS has no reliance on WSRF. One can use the base
interfaces that have already been outlined in this paper and access the service
properties without requiring WSRF, albeit if you do not use WSRF you can only
retrieve the whole property document. There are no means provided for getting

82 M. Antonioletti, A. Krause, and N.W. Paton

these properties at a finer level of granularity unless WSRF is used. The soft
state lifetime management without WSRF has to be explicit, i.e. the consumer
has to send a destroy operation to the data service or the data resource will be
accessible for as long as the data service is there. Using WSRF allows one to have
fine grain access to the service properties [WS-ResourceProperties] and also use
the WSRF soft state lifetime management [WS-ResourceLifetime] but there is
a caveat: you still require the data resource abstract name to be included in the
message body even if it is only for a WSRF implementation to ignore it. This
was done to preserve the message structure regardless of whether WSRF is used
or not.

Figure 7 schematically represents how a WSRF service infrastructure is lay-
ered over the core DAIS functionality.

Fig. 7. WSRF DAIS extensions

A data service may represent more than one data resource. If WSRF is used
each data resource must have a corresponding WSRF data resource. These are
used for both externally and service managed data resources. In order to allow
a data resource’s abstract name to be mapped to an EPR the optional data
resource list interface may be implemented which provides such functionality as
well as allowing a consumer to obtain a list of all the data resources known to a
data service.

This ability to use DAIS without requiring an explicit dependency on WSRF
has been undertaken in order to provide a means for those who would like to use
DAIS but are not ready to adopt WSRF. The ability to use DAIS without WSRF,
in essence, provides a potential upgrade path by allowing service providers to
start off with a non-WSRF solution and then, as confidence in WSRF grows,
move on to exploit the additional capabilities provided by WSRF.

6 Conclusions

The DAIS specifications only provide web service interfaces to relation and XML
data resources. However, the overall framework is extensible, and different groups

An Outline of the GGF Data Access and Integration Service Specifications 83

are exploring the development of additional realisations for object databases,
ontologies and files.

The DAIS specifications are intended to provide useful functionalities for de-
scribing and accessing data resources, and can be used to support common use
cases directly. However, they have really been designed to form part of a wider
service-based architecture. As such, standards from the web services community
for authentication and transaction management, and from the grid community
for data movement and negotiation, can be seen as complementing the DAIS
specifications, and facilitating their use in an increasing range of applications.

Acknowledgements. We gratefully acknowledge the input and contributions that
have been made to the production of these standards, in particular: Bill Allcock,
Malcolm Atkinson, N.Chue Hong, Brian Collins, Patrick Dantressangle, Vijay
Dialani, Dieter Gawlick,Shannon Hastings, Allen Luniewski, James Magowan,
Sastry Malladi, Inderpal Narang, Savas Parastatidis, Greg Riccardi, Steve Tuecke,
Jay Unger, Paul Watson, Martin Westhead, Simon Laws, Susan Malaika, Dave
Pearson and the many others who are not explicitly mentioned here.

References

[Antonioletti-05] M. Antonioletti, M.P. Atkinson, R. Baxter, A. Borley, N.P. Chue
Hong, B. Collins, N. Hardman, A. Hume, A. Knox, M. Jackson, A. Krause, S. Laws,
J. Magowan, N.W. Paton, D. Pearson, T. Sugden, P. Watson, and M. Westhead. The
Design and Implementation of Grid Database Services in OGSA-DAI.Concurrency
and Computation: Practice and Experience, 2005, Volume 17, Issue 2-4 , Pages 357-
376.

[Atkinson-03] M.P. Atkinson, V. Dialani, L. Guy, I. Narang, N.W. Paton, D. Pearson,
T. Storey and P. Watson. Grid Database Access and Integration: Requirements
and Functionalities. GFD.13. March 13th 2003. http://www.ggf.org/documents/
GFD.13.pdf.

[DAIS-Mappings] S. Laws, S. Malladi, S. Parastatidis. Scenarios for Mapping
DAIS Concepts. September 1, 2004. http://forge.gridforum.org/projects/dais-wg/
document/Scenarios for Mapping DAIS Concepts/en/3

[MOWS] I. Sedukhin (Ed). Web Services Distributed Management: Management of
Web Services (WSDM-MOWS) 1.0. OASIS-Standard, 9 March 2005. http://www.
oasis-open.org/apps/org/workgroup/wsdm/download.php/11761/wsdm-mows-
1.0.pdf

[MUWS] W. Vambenepe (Ed).Management: Management Using Web Services
(MUWS 1.0) Part 1. OASIS Standard, 9 March 2005. http://www.oasis-open.org/
apps/org/workgroup/wsdm/download.php/11734/wsdm-muws-part1-1.0.pdf

[OGSA] I. Foster (Ed), H. Kishimoto (Ed), A. Savva (Ed), D. Berry, A. Djaoui, A.
Grimshaw, B. Horn, F. Maciel, R. Subramaniam, J. Treadwell, J. Von Reich. The
Open Grid Services Architecture, Version 1.0. Global Grid Forum. GFD-I.030. 29
January 2005. http://www.ggf.org/documents/GFD.30.pdf

84 M. Antonioletti, A. Krause, and N.W. Paton

[OGSA-Data] I. Foster, S. Tuecke, J. Unger, A. Luniewski. OGSA Data Ser-
vices. February 24, 2004 http://forge.gridforum.org/projects/dais-wg/document/
OGSA Data Services-ggf10/en/1

[Ozsu-99] T. Ozsu and P. Valduriez, Principles of Distributed Database Systems, 2nd
Edition, Prentice-Hall, 1999.

[WS-Addressing] M. Gudgin (Ed), M. Hadley (Ed). Web Services Addressing 1.0
- Core. W3C Candidate Recommendation 17 August 2005. http://www.w3.org/
TR/ws-addr-core.

[WS-AtomicTransaction] L. F. Cabrera, G. Copeland, M. Max Feingold (Editor) R.
W. Freund, T. Freund, J. Johnson, S. Joyce, C. Kaler, J. Klein, D. Langwor-
thy, M. Little, A. Nadalin, E. Newcomer, D. Orchard, I. Robinson, T. Storey,
S. Thatte, Web Services Atomic Transaction (WS-AtomicTransaction). Version
1.0. August 2005. ftp://www6.software.ibm.com/software/developer/library /WS-
AtomicTransaction.pdf

[WS-DAI] M. Antonioletti, M. Atkinson, S. Malaika, S. Laws, N. W. Paton D. Pearson
and G. Riccardi. Web Services Data Access and Integration (WS-DAI). DAIS-WG
Specification Version 1.0. Draft, Global Grid Forum. 2005.

[WS-DAIR] M. Antonioletti, B. Collins, A. Krause, S. Malaika, J. Magowan, S. Laws,
N. W. Paton. Web Services Data Access and Integration - The Relational Realisation
(WS-DAIR) Specification Version 1.0. Draft, Global Grid Forum. 2005.

[WS-DAIX] M. Antonioletti, A. Krause, S. Hastings, S. Langella, S. Malaika, S. Laws,
N. W. Paton. Web Service Data Access and Integration - The XML Realisation
(WS-DAIX) Specification Version 1.0. Draft. Global Grid Forum. 2005.

[WS-ResourceProperties] S. Graham (Ed), J. Treadwell (Ed). Web Services Resource
Properties 1.2 (WS-ResourceProperties), Version 1.2, Committee Draft 01, 19
May 2005. http://docs.oasis-open.org/wsrf/wsrf-ws resource properties-1.2-spec-cd-
01.pd

[WS-ResourceLifetime] L. Srinivasan (Ed), T. Banks (Ed). Web Services Resource Life-
time 1.2 (WS-ResourceLifetime), Version 1.2, Committee Draft 01, 19 May 2005.
http://docs.oasis-open.org/wsrf/wsrf-ws resource lifetime-1.2-spec-cd-01.pdf

[WS-Security] Web Services Security v1.0 (WS-Security 2004) [OASIS 200401]
http://www.oasis-open.org/committees/ tc home.php?wg abbrev=wss

File Caching in Data Intensive Scientific

Applications on Data-Grids

Ekow Otoo1, Doron Rotem1, Alexandru Romosan1, and Sridhar Seshadri2

1 Lawrence Berkeley National Laboratory,
University of California, Berkeley, California 94720

2 Leonard N. Stern School of Business, New York University,
44 W. 4th St., 7-60, New York, 10012-1126

Abstract. We present some theoretical and experimental results of an
important caching problem which arises frequently in data intensive sci-
entific applications that are run in data-grids. Such applications often
need to process several files simultaneously, i.e., the application runs
only if all its needed files are present in some disk cache accessible to
the compute resource of the application. The set of files requested by
an application, all of which must be in cache for the application to run,
is called a file-bundle. This requirement introduces the need for cache
replacement algorithms that are based on file-bundles rather then indi-
vidual files. We show that traditional caching algorithms such as Least
Recently Used (LRU) and GreedyDual-Size (GDS) are not optimal in
this case since they are not sensitive to file-bundles and may hold in
the cache non-relevant combinations of files. We propose and analyze a
new cache replacement algorithm specifically adapted to deal with file-
bundles. Results of experimental studies of the new algorithm, using a
disk cache simulation model under a wide range of conditions such as
file request distributions, relative cache size, file size distribution, and
incoming job queue size, show significant improvement over traditional
caching algorithms such as GDS.

1 Introduction

1.1 Overview

Data intensive scientific applications concern application software that have very
large data and storage resource requirements. Such applications are becoming in-
creasingly prevalent in domains of scientific and engineering research. Examples
include long running simulations of time-dependent phenomena that periodi-
cally generate snapshots of their state as in Astrophysics and climate modeling,
simulation of combustion phenomena, and very large data sets generated from
experiments such as BaBar [1] or the Large Hadron Collider (LHC) in the domain
of high energy particle physics. The large datasets, from simulations and actual
experiments, are preprocessed and maintained in units of files on geographically
dispersed mass storage systems of a data-grid. Subsequent data analyses and
visualization applications retrieve subsets of these files into locally accessible
disk storage systems of high performance computing resources. This gives rise to

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 85–99, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

86 E. Otoo et al.

large demands for disk and tape storage resources, and high network bandwidth.
The disk storage effectively cache the requested files according to the demands
of the application.

Caching has long been recognized as one of the most important techniques
for reducing bandwidth consumption [2,3]. The general use of the term caching
implies a specialized buffer storage that is used to speed up access when the
data is transferred between different levels of a storage hierarchy with different
characteristics: speed of access, size and cost per bit (see Fig. 1).

Small

LargesrSlow

Fastest
CapacityAccess

Files

 : ~10s100GB −

4 − 256GB: ~5ms

512KB − 4GB: ~ 100ns

Pages/Blocks

Capacity & Access Time

Tape/Tertiary Storage

Disk Storage

Memory

Fig. 1. The Different Levels of Caching in Data Intensive Applications

Successful caching relies on two properties of the access patterns of most
application to be effective: temporal locality - if a file is accessed once, it is likely
to be accessed again soon; spatial locality - if a file is accessed then files in close
proximity (e.g., on the same storage tape) are also likely to be accessed. In
the context of data-grids [4], a middle-ware service such as a storage resource
manager [5] or distributed caching service [6], provides staging disks for files
being requested. The disk cache manager often has no knowledge of the request
stream of files being requested into the cache. Consequently, many cache systems
are based on recognition of patterns of either recently used or frequently used
files and use this to determine which files should be kept in cache and which
should be evicted.

1.2 Problem Description and Previous Work

Consider a sequence of jobs that make requests for files at a computational re-
source where each job is comprised of one or more file requests. The requests are
serviced in some order: first come first serve (FCFS), shortest job first (SJF),
etc. A cache C of some fixed size s(C), is available for storing a subset of all
the requested files. A job is serviced only if all the files it needs are already in
the cache C, otherwise it waits in a queue until all its requested files are trans-
ferred from a Mass Storage System (located either locally or at a remote site),
into C. These data transfers cause time delays for the job execution, as well as
consumption of valuable resources such as network and data storage bandwidth.

File Caching in Data Intensive Scientific Applications on Data-Grids 87

The problem we address is that of finding an optimal cache replacement pol-
icy that maximizes throughput, or alternatively minimizes the volume of data
transfered, under a limited cache space. The additional constraint is that all the
files in a request must be in the disk cache for the job to run.

We refer to the set of files requested by a job as a file-bundle. Processing a
job requires that all the files in its file-bundle be present simultaneously in the
cache. For this reason, it is necessary in this environment to make cache loading
and replacement decisions based on file-bundles rather then a single file at a time
as in traditional file caching algorithms. This difference is quantified further in
section 3.

The quest for optimal caching strategies has posed some interesting chal-
lenges and has culminated in the development of numerous cache replacement
policies some of which include: Least Recently Used (LRU), Least Frequently
Used (LFU), Greedy Dual Size (GDS) [7,8] and Minimum Average Cost Per Re-
placement (MACR). The closest environment, in the use of caching techniques,
to the one addressed in scientific data management in data-grids, is that of web-
caching where proxy servers and reverse proxy servers are configured essentially
as web caches. Other systems that provide similar caching functionalities are the
dCache [6], and Storage Resource Managers (SRM) [5].

Although the literature provides a considerable number of papers [7,9,8,10]
that describe and analyze caching and replacement policies, the main concern
of most of these efforts is the maintenance of a “popular” set of files in the
cache in order to maximize “hit” ratios and minimize expected access costs
for requested files not found in cache. The problem discussed in this paper is
radically different from these earlier works as requests require caching of multiple
files simultaneously rather than single files.

We propose here algorithms based on an analysis of the problem that maxi-
mizes the throughput of jobs, i.e., number of jobs serviced per unit time, while
also minimizing the byte miss ratio [2,7]. We compare our results with some
earlier works on caching, using the byte miss ratio as our performance metric for
most of the experiments. We also show how the results are affected when queues
of waiting jobs are taken into consideration. The rational in choosing byte miss
ratio (or conversely, the byte hit ratio), metric for comparison is that, we wish
to minimize the amount of data transfered into and out of the cache.

1.3 Main Results

The main results of this paper are: i) Identification of a new caching prob-
lem, which arises frequently in scientific applications that deal with file-bundle
caching. ii) Derivation of a new cache replacement algorithm File Bundle Cache
(FBC), that is simple to implement. Unlike existing cache replacement algo-
rithms in the literature, we track the file-bundles that were requested in the
past to determine what combinations of files should be retained or evicted from
the cache. This results in a much lower cache miss-ratio under a wide range
of conditions tested. iii) Results of extensive simulation runs that compare the
FBC algorithm with GreedyDual-Size [7] cache replacement consistently show

88 E. Otoo et al.

that FBC gives a much lower average volume of data transfers per request with
file requests observing either Uniform or Zipf distributions.

The rest of the paper is organized as follows. In Section 2 we discuss file
caching and its significance to data intensive application. In Section 3 we present
a heuristic based on a greedy algorithm called File Bundle Caching (FBC). We
give a bound from the optimal in this section. This result, using LP relaxation, is
derived in [10]. Our experiments carried out to compare our proposed algorithm
with GredyDual-Size is introduced in Section 4 and the results are discussed in
Section 5. We conclude with Section 6 where we give some directions for future
work.

2 File Caching in Scientific Data Management

This work is motivated by file caching problems arising in scientific data man-
agement [1,4], and other applications that involve multi-dimensional data [9,11].
One common characteristic of such applications is that they deal with objects
that have multiple attributes (10 to 500), and often partition the data such that
values for each attribute (or a group of attributes) are stored in a separate file
(vertical partitioning). Subsequent analysis and data mining jobs that operate
on this data often require that several of these attributes are compared or com-
bined together for further computation. In relational database terminology, this
is equivalent to computing a multi-way join.

An example of caching of file-bundles comes from the area of bitmap indices
for querying high dimensional data [11]. In this case, a collection of N objects
(such as physics events) each having multiple attributes, is represented using
bitmaps in the following way: the range of values of each attribute is divided
into sub-ranges also called bins; a bitmap is constructed for each bin with a ‘0’
or ‘1’ bit indicating whether an attribute value is in the required sub-range. The
bitmaps (each consisting of N bits before compression) are stored in multiple
files, one file for each bin of an attribute. Range queries are then answered by
performing boolean operations among these files. Again, in this case all files
containing bitmaps relevant to the query form a file-bundle as they must be
read simultaneously to answer the query. Other examples of applications that
require file-bundles are applications that need to compute derived data based on
raw data residing in several files. For example applications that analyze physics
experimental data coming from detectors, require file-bundles consisting of files
with measurement data (energy level, momentum etc.) together with other files
containing instrument calibration data for proper interpretation of the measure-
ments.

As an example of the type of scientific applications for which our file-bundle
caching is relevant, we analyzed trace logs taken from October 1 to October 26,
2004 corresponding to workloads of an actual data intensive scientific applica-
tions of the high energy physics BaBar experiment [1]. During this time interval,
504,493 jobs were submitted requesting a total of 2,028,541 files, 86,378 of which
were unique. The Figures 2(a) and 2(b) illustrate respectively, the file request

File Caching in Data Intensive Scientific Applications on Data-Grids 89

1

10

10 2

10 3

10 4

10 5

0 100 200 300 400 500 600 700
No of files per request

Fr
eq

ue
nc

y
of

 re
qu

es
ts

(a) File Request Distribution.

1

10

10 2

10 3

20000 40000 60000 80000
File rank

Nu
m

be
r o

f r
eq

ue
st

s

(b) Popularity of Files.

Fig. 2. Sample Workload from BarBar Physics Experiment

distribution and distribution of file occurrences within requests of a sample of
the workload from BaBar analysis application.

We note that in this case the size of a file-bundle can vary from 1 to 700
with small sized bundles being the most popular. Also we observe that some
files were requested more often, and appeared frequently in most requests, while
others were requested only once in the entire workload.

3 Algorithms and Bounds from Optimality

3.1 File Bundle Caching Algorithm

The main idea behind our caching strategy is to load the cache with a set of files
that correspond to popular file-bundles, thus maximizing the probability that
an arriving request can find all its files in the cache. We illustrate the difference
between this strategy and caching policies based on single file popularity with a
small example. For a given cache state and a request r, we say that the cache
supports r or, alternatively, that r is a request-hit if the file-bundle needed by r
is found in the cache.

Example. Let us assume that we have six possible requests r1, r2, ..., r6 each
associated with a file-bundle drawn from F = f1, f2, ...f7 as shown in Table 1.
Further, let us assume that all files are of the same size, the cache can hold
only three files, and all six requests are equally likely, i.e. any request is likely
to arrive with a probabilty of 1

6 . Each row in Table 2 shows the probablity of
the event that a file is requested by a random request. Note that the sum of
probabilities is more than 1 as the events are not mutually exclusive. We note
that the most popular file is f5 as 4 requests out of the six possible requests
need it. This is followed by files f6 and f7 each needed by 3 of the requests.
Each row in Table 3 shows request-hit probabilities, i.e., the probablity that

90 E. Otoo et al.

a random request will find its file-bundle in the cache under some cache
content. Only 5 cases of cache content out of the 35 cases (possible ways of
choosing 3 files from 7) are shown. We note that keeping the 3 most popular
files (row 1 of the Table 3) does not lead to the largest request-hit probability.
The best request-hit probability is represented by the second row of Table 3
which has a request-hit probability of 1

2 since keeping files f1, f3, f5 in the
cache results in a request-hit for 3 out of the six possible requests.

Table 1. Requests and
their file-bundles

Request File-Bundle
r1 f1,f3,f5
r2 f2,f6,f7
r3 f1,f5
r4 f4,f6,f7
r5 f3,f5
r6 f5,f6,f7

Table 2. File request
probabilities

File No of File req.
Requests prob.

f1 2 1/3
f2 1 1/6
f3 2 1/3
f4 1 1/3
f5 4 2/3
f6 3 1/2
f7 3 1/2

Table 3. Request-hit
probabilities

Cache Requests Req.-hit
Contents Supported prob.
f5,f6,f7 r6 1/6
f1,f3,f5 r1,r3,r5 1/2
f1,f5,f6 r3 1/6
f3,f5,f6 r5 1/6
f1,f2,f3 - 0

We also note that a simplistic approach that loads or evicts file-bundles from
the cache associated with requests based solely on their popularity (e.g., LFU-
Least Frequently Used based algorithms), does not work, since file-sharing be-
tween file-bundles must also be taken into account. For example, let us consider
a small subset of the requests as shown in Fig. 3. The relative popularity of each
of the 3 requests is also given. Eviction of the file-bundle associated with the
relatively unpopular request r2 (popularity of .2) will cause a cache miss for the
highly popular requests r1 and r3 (each with popularity of .4) whose file-bundles
overlap with it. Similar example can be constructed for file-bundle LRU based
algorithms as well. For that reason, the degree of file-sharing must also be taken
into account by an effective cache replacement algorithm. We now proceed to
describe our File Bundle Caching (FBC), algorithm, which loads and evicts files
from the cache in response to new requests.

r2
.2

r1
.4

r3
.4

f1 f3f2

Fig. 3. Example file-bundle overlaps

File Caching in Data Intensive Scientific Applications on Data-Grids 91

At the heart of our caching strategy is an algorithm called OptCacheSelect,
called by FBC, to determine which files must be loaded and/or replaced. We
will first describe OptCacheSelect and then show how it is incorporated into the
main algorithm FBC. It takes into account file sizes and request frequency counts
as well as degree of file-sharing. It will be described in more detail below. The
result produced by OptCacheSelect is a new set of files loaded into the cache that
attempts to maximize request-hit probability. The algorithm is a greedy heuristic
that attempts to achieve a good approximation to an NP-hard problem that is
a generalization of the Knapsack problem.

The OptCacheSelect algorithm takes as its input a data structure L(R) con-
taining full information about a collection of historical requests R. The data
structure L(R) is initially empty and gets updated with each request processed.
For lack of space we will not present here the exact implementation of L(R),
which is basically a hash-table with pointers to other structures, but rather de-
scribe its contents. For each request ri ∈ R that was served by the system we
store in L(R) the following information:

– An associated value v(ri). In our current implementation v(ri) is simply a
counter incremented by 1 each time the same request appears but, it can
also reflect request priority or some other measure of importance. In Section
5 we show how this function can be used to enhance “fair” scheduling of the
requests.

– the set F (ri) of files requested by ri and the size of each such file.

We need the following additional definitions in the description of the algo-
rithm. We denote the size of a cache C by s(C). For a file fi, let s(fi) denote its
size and let d(fi) represent the number of requests served by it. The adjusted
size of a file fi, denoted by s′(fi), is defined as its size divided by the number of
requests it serves, i.e., s′(fi) = s(fi)/d(fi).

The adjusted relative value of a request, or simply its relative value, v′(rj), is
its value divided by the sum of adjusted sizes of the files it requested, i.e.

v′(rj) =
v(rj)∑

fi∈F (rj)
s′(fi)

The algorithm OptCacheSelect(L(R),S(C)) attempts to select an optimal set
of files that fits in the cache in order to serve a subset of R with the highest
total value. It does so by servicing requests in decreasing order of their adjusted
relative values skipping requests that cannot be serviced due to insufficient space
in the cache for their associated files. The final solution is the maximum between
the value of requests loaded and the maximum value of any single request. The
justification for the comparison is given in [10]

The intuition behind using v′(rj) as a measure for ranking requests is that
v′(rj) increases with an increase in request popularity and degree of sharing of
its files with other requests. On the other hand, it decreases when the amount
of cache resources used by F (rj) grows.

In practice, we even do better by recomputing v′(rj) for all requests rj not
selected yet, and resorting the requests in decreasing order of adjusted values,

92 E. Otoo et al.

Input : A data structure L(R) as described above and a cache C of
size s(C)

Output: The solution G - a subset of the requests in R whose files
must be loaded into the cache.

Step 0: /* Initialize */
G ← φ; //set of requests selected
s(C′) ← s(C) ; // s(C′) keeps track of unused cache size
Step 1: Sort the requests in R in decreasing order of their relative
values and renumber from r1, . . . , rn based on this order
Step 2:
for i ← 1 to n do

if s(C′) ≥ s(F (ri)) then
Load the files in F (ri) into the cache
s(C′) ← s(C′) − s(F (ri)) ; // update unused cache size
G ← G ∪ ri ; // add request ri to the solution

end
end
Step 3: Compare the total value of requests in G and the highest value
of any single request and choose the maximum.

Algorithm 1: Algorithm OptCacheSelect

following Step 2. This is done by setting to 0 the size of files in F (rj) that
are already in the cache since these files will not consume any additional cache
resources. This leads to an increase in adjusted value for requests that share files
with the previously selected requests.

We are now in a position to describe the main steps of our caching algorithm,
FBC, as illustrated in Fig. 4. Initially the cache is empty, whenever a new request
rnew arrives all its missing files (files requested by it but not currently in the
cache) are loaded into the cache (Fig. 4a). At some point the cache fills up (Fig.
4b) and a caching replacement decision must be taken when a new request, rnew,
arrives.

r new

f fbfa c

+ =

3r

f1
f2
f3
f4
f5
f6

r

r

1

2

3r

nf

f1
f2
f3
f4
f5
f6

1r

r

r

r

2

4

m . .
. .

. .
. .

. .
. .

. .
. .

. .

pr

af

bf

cf

f7
f11
f1
f4
fj
fk

rq

(a) Cache Filling Up (b) Cache Full (d) Resulting Cache(c) Algorithm Applied

newr

. .
. .

. .
. .

. .
. .

. .

rs

Fig. 4. The steps of algorithm FBC

File Caching in Data Intensive Scientific Applications on Data-Grids 93

All files requested by rnew not currently present in the cache must be loaded
into the cache and some other files currently in the cache must be evicted in
order to make space for them (Fig. 4c). We compute S, the space requirement
for the new files requested by rnew, and then call on algorithm OptCacheSe-
lect described above to decide on the optimal files that must be maintained in
the remaining part of the cache s(C) − S, to maximize request-hit probability
(Fig. 4d). Algorithm 2 formalizes the steps of the FBC algorithm.

Input : A new request rnew, a data structure L(R) including
information about requests R = {r1, . . . rn}, their values
v(rj), the sets F (ri), a cache C of size s(C) ,F (C) the set of
files currently in the cache, and the sizes s(fi) of all files
requested by members of R.

Output: The solution G - a set of files that must be loaded into C

Step 1: Compute S, the amount of space needed by files in F (rnew)
that are not currently in the cache C
Step 2: Call OptCacheSelect(L(R),s(C)-S) and store its solution in
F (Opt)
Step 3: Load into the cache C the files in F (Opt)\F (C)
Step 4: Update the data structure L(R) with all relevant information
about rnew

Algorithm 2: Algorithm OptFileBundle

3.2 Complexity of the Algorithm

An analysis of the algorithm is presented in [10], where we formulate the problem
as a lnear programming one and its dual. Due to space limitation, we only state
the main results of the analysis in the following theorem.

Theorem 1. Let VOptCachSelect represent the value produced by Algorithm Opt-
CachSelect and let VOPT be the optimal value. Let d∗ denote the maximum degree
of a file, i.e., d∗ = maxi d(fi) then

VOPT

VOptCachSelect
≤ 2d∗.

The proof of the above theorem is given in [10]. In practice the value of d∗

is quite small as it represents the maximum number of requests sharing the
same file. In extreme cases, if a small number of files have large degrees, we
can keep them permanently in the cache, and d∗ then represents the maximum
degree among the remaining files. Also it is interesting to note that in the purely
random case, where each request ri, picks randomly a set of k = |F (ri)| out
of n files, for k
 n and r = O(n), the expected value of d∗, E(d∗), satisfies
E(d∗) ∼ log n

log log n (See [12], pp. 94).

94 E. Otoo et al.

4 Simulation Framework

We designed a simulation model to explore how the FBC algorithm compares
with the GreedyDual-Size algorithm [7,8]. For that purpose, we implemented
a modified version of GreedyDual-Size where each request is for a set of files
rather than a single file as in the original implementation. The modified GDS
algorithm is given in Algorithm 3. Each cached file f is associated with a value
H(f) defined by the cost c(f) of reading the file into cache, and the size s(f) of
the file. Whenever space is required, the file selected for eviction is that with the
minimum H(f) value. By maintaining cached files as a min-heap data structure
based on the H(f) values, the selection of candidates for eviction is done in
logarithmic time. The modification of the GreedyDual-Size to GreedyDual-MF
is conducted by repeated eviction of the file q which has the minimum H value
until all the files in the new request can be accommodated in the cache.

Input: A request stream R = r1, r2,N , a cache C of size s(C),
F (C), the set of files currently in cache. Note: a request is for a
set of files ri = {f0, f1, . . . , fri}

Result: Loading of the cache that satisfies GreedyDual-Size Algorithm
for each request ri.

Initialize L ← 0 ;
for i ← 1 to N do

Get next request
Set req ← ri ;
foreach f ∈ req do

if f is already in cache C then
H(f) ← L + c(f)/s(f) ;

else
while there is not enough room in C to hold f do

Set L ← min q∈C
q �∈ri

H(q) ;

Evict q such that H(q) = L ;
Load f into the cache C ;
Set H(f) ← L + c(f)/s(f) ;

end
end

end
end

Algorithm 3: Algorithm GDS-MF

4.1 Workload Characterization

We constructed a simulated workload consisting of a given set of jobs, with
each job requesting a random number of files from a pool of available files. The
parameters chosen for our simulated workload are as close as possible to observed

File Caching in Data Intensive Scientific Applications on Data-Grids 95

real experiments that log single file requests at a time. The size of each file was
generated randomly between a minimum size of 10 MB and a maximum size of
300 MB. The set of files requested by each job was chosen uniformly from the
list of available files such that the total size of the files requested by any given
job was smaller than the available cache size. The cache sized varied between
5 GB and 100 GB. Each simulation run consists of generating a large number of
jobs (≈ 20000) and selecting a number of them (typically 10000) using either a
uniform or Zipf distribution to study the effects of the various parameters.

4.2 Simulation Environment

The simulation program, cacheSim, was written in C++ with extensive use of
STL. Using a cluster of three 1.6 GHz dual Opterons with 2GB of RAM each,
we ran a large number of experiments to study the behaviour of the proposed al-
gorithms for different combinations of parameters. These experiments consumed
over 1000 hours of CPU time. The main performance metric used is the byte miss
ratio and this was observed primarily for two different workload distributions,
and varying cache sizes. There are several parameters of interest that affect the
result of the simulation:

Popularity Distribution. The popularity distribution of requests for typical
workloads is very hard to characterize as it varies widely from setup to setup
and even from day to day. As such we are looking at the effects of the two
extremes: a purely random distribution, and a Zipf one.

Cache Size. Given requests of a known average size, varying the cache size
determines the number of requests that can fit in cache at any given time.
The more requests already in cache, the more likely that files requested by
an incoming job are already present in cache.

Incoming Queue Length. Instead of processing a job as soon as it is submit-
ted, one can also consider aggregating the jobs in an incoming queue of a
given length, and only submitting the best job once the queue is full.

Queueing Fairness. Requests with a consistently low value stay queued for a
large number of iterations. To improve the fairness of the queueing algorithm,
we increase the value of a request in queue by a function of the number of
iterations the request has been waiting.

5 Discussion of Results

In this section we present results of our simulation runs where we studied the
effects of various caching parameters on the performance of our algorithm. The
first set of experiments performed involved job popularity distributions. A uni-
form popularity distribution means that every request from the pool of available
requests is equally likely to be requested, whereas Zipf’s distribution assigns a
probability of selection proportional to 1

i to the ith most popular request.
Figures 5(a) and 5(b) compare the byte miss ratio for uniform and Zipf request

distributions. The cache replacement strategy based on the FBC algorithm is

96 E. Otoo et al.

superior to the one based on the GDS algorithm in the sense that the byte miss
ratio is lower. The improved performance of the FBC algorithm is attributed to
keeping requests coherent in the cache, as well as keeping track of the popularity
of each request. The latter is evident when we consider a Zipf distribution where a
small set of requests occurs with a high frequency. The FBC algorithm increases
the value of each request by keeping track of its popularity thus increasing the
likelihood of the request staying in the cache.

The overall effect of varying the cache size on the byte miss ratio is shown in
Figure 6, where the Relative Cache Size is defined to be the ratio of the total
size of the files requested to the cache size. As the cache is able to serve more
requests the amount of data moving into the cache for each request decreases.
Three factors contribute to this effect: 1) the number of files common to all the
requests already cached increases, thus minimizing the amount of new data that
needs to be brought into the cache, 2) the likelihood of often seen requests to
be already in the cache increases, and 3) the efficiency of the FBC algorithm
improves with the number of requests considered when making a decision as to
what requests to keep in cache. The first factor dominates the improved byte
miss ratio for the uniform distribution shown in Fig. 6(a) while the second one
dominates for the Zipf distribution in Fig. 6(b), hence the dramatic improvement
in performance with increasing the cache size.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

B
yt

e
 M

is
s

R
a

tio

Requests

FBC
GDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

B
yt

e
 M

is
s

R
a

tio

Requests

FBC
GDS

(a) Uniform Distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

B
yt

e
 M

is
s

R
a

tio

Requests

FBC
GDS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

B
yt

e
 M

is
s

R
a

tio

Requests

FBC
GDS

(b) Zipf Distribution.

Fig. 5. Byte Miss-Ratio vs. Cache Size

Another set of experiments performed involved aggregating the jobs in a pro-
cessing queue of varying length instead of processing them in FIFO order. Once
the queue is full, we run the FBC algorithm on the queued requests, and then
process the request with the highest value. We do not discuss the details of the
results due to lack of space. However, a negative consequence of queuing re-
quests is that requests with a consistently low value may experience starvation,
i.e., stay queued for a large number of iterations. Figures 7(a) and 7(b) show
the queueing effects for uniform and Zipf distributions, respectively, for a queue

File Caching in Data Intensive Scientific Applications on Data-Grids 97

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

B
y
te

 M
is

s
 R

a
ti
o

Relative Cache Size (%)

FBC
GDS

(a) Uniform Distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

B
y
te

 M
is

s
 R

a
ti
o

Relative Cache Size (%)

FBC
GDS

(b) Zipf Distribution.

Fig. 6. Effect of Varying Cache Size

10

10 2

10 3

10 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 weight

1 weight

2 weight

e weight

Wait Time in Queue (Iterations)

R
eq

ue
st

s

(a) Uniform Distribution.

10

10 2

10 3

10 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 weight

1 weight

2 weight

e weight

Wait Time in Queue (Iterations)

R
eq

ue
st

s

(b) Zipf Distribution.

Fig. 7. Queue Wait Time (in iterations) for different “anti-starvation” functions - Log
Plot

length of 10: while the majority of requests are scheduled right away, there exists
a tail of requests which linger in the queue for a large number of iterations. To
mitigate the situation we artificially increase the value of a request in queue by
an “anti-starvation” function that takes into account the number of iterations
i the request has been waiting in the queue before being scheduled for execu-
tion. Three different functions were considered: increase the request value by 1)
i (1-weight), 2) i2 (2-weight), and 3) 2i (e-weight). Since the value of a request
depends on its popularity, the effect of increasing a request value by 1-weight or
2-weight on the wait time is less pronounced for a Zipf distribution than for a
uniform one since the natural increase in value with popularity of the most often
requested requests is of about the same order of magnitude. Only when we arti-
ficially increase the value of a queued request by e-weight for a Zipf distribution
we begin to see it dominate the natural increase with popularity.

98 E. Otoo et al.

6 Conclusions and Future Work

We have identified a new type of caching problem that is notable in applications
where multiple files must be in cache for an application to access them concur-
rently. This problem arises in various scientific and commercial applications but
in the use of storage resource manager to service file stagging in the problem is
particularly significant.Traditional cache replacement policies, where decisions
as to which files should be cached or evicted, are based on one file request at a
time, fail to give optimal solutions.

The problem of optimally loading the cache so as to maximize the value of
satisfied requests is NP hard. We have proposed approximation algorithms that
were shown analytically to produce solutions bounded from the optimal one by
a factor of 1/(2d∗). Extensive simulations that compare our proposed algorithm,
FBC with a variant of the GreedyDual-Size (GDS), that handles multiple file
requests at a time, show that the proposed algorithms outperform the GDS for
both uniform and Zipf distributions. The difference in Zipf distribution was even
more pronounced. The results indicate that FBC involves less data transfers into
and out of the cache than GDS.

Our future work will address incorporating the FBC algorithm in an actual
application environment, such as the data-grid, where large scale data intensive
scientific applications are being scheduled to run in the future.

Acknowledgment

This work is supported by the Director, Office of Laboratory Policy and In-
frastructure Management of the U. S. Department of Energy under Contract
No. DE-AC03-76SF00098. This research used resources of the National Energy
Research Scientific Computing (NERSC), which is supported by the Office of
Science of the U.S. Department of Energy.

References

1. BaBar: (The babar collaboration http://www.slac.stanford.edu/bfroot/)
2. Andrade, H., Kurc, T., Sussman, A., Borovikov, E., Saltz, J.: On cache replacement

policies for servicing mixed data intensive query workloads. In: Proc. 2nd Work-
shop on Caching, Coherence, and Consistency, with the 16th ACM Int’l. Conf. on
Supercomputing, New York, NY (2002)

3. Reiner, B., Hahn, K.: Optimized management of large-scale datasets stored on
tertiary storage systems. IEEE Distributed Systems Online Magazine (2004)

4. Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S.: The Data
Grid: Towards an architecture for the distributed management and analysis of
large scientific datasets. J. Network and Computer Applications 23 (2000) 187 –
200

5. Shoshani, A., Sim, A., Bernardo, L.M., Nordberg, H.: Coordinating simultaneous
caching of file bundles from tertiary storage. In: Proc. 12th Int’l. Conf. on Scientific
and Stat. Database Management, SSDBM’2000. (2000) 196 – 206

File Caching in Data Intensive Scientific Applications on Data-Grids 99

6. Ernst, M., Fuhrmann, P., Gasthuber, M., Mkrtchyan, T., Waldman, C.: dCache:
a distributed data caching system. In: Computing In High Energy And Nuclear
Physics, CHEP’01. (2001)

7. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In: USENIX
Symposium on Internet Technologies and Systems. (1997)

8. Young, N.: On-line file caching. In: SODA: ACM-SIAM Symposium on Discrete
Algorithms (A Conference on Theoretical and Experimental Analysis of Discrete
Algorithms). (1998)

9. Otoo, E.J., Rotem, D., Shoshani, A.: Impact of admission and cache replacement
policies on response times of jobs on data grids. In: Int’l. Workshop on Challenges of
Large Applications in Distrib. Environments, Seatle, Washington, IEEE Computer
Society, Los Alamitos, California (2003)

10. Otoo, E.J., Rotem, D., Romoson, A., Seshadri, S.: File caching in data intensive
scientific applications. Technical report, Lawrence Berkeley National Laboratory,
LBNL Report No 55587 (2004)

11. Wu, K., Koegler, W.S., Chen, J., Shoshani, A.: Using bitmap index for interactive
exploration of large datasets. In: SSDBM’2003, Cambridge, Mass. (2003) 65–74

12. Devroye, L.: Lecture notes on bucket hashing. Birkhauser, Boston (1985)

RRS: Replica Registration Service

for Data Grids

Arie Shoshani, Alex Sim, and Kurt Stockinger

Computational Research Division,
Lawrence Berkeley National Laboratory,

University of California,
1 Cyclotron Road, Berkeley, California 94720, USA

{AShoshani, ASim, KStockinger}@lbl.gov

Abstract. Over the last few years various scientific experiments and
Grid projects have developed different catalogs for keeping track of their
data files. Some projects use specialized file catalogs, others use dis-
tributed replica catalogs to reference files at different locations. Due to
this diversity of catalogs, it is very hard to manage files across Grid
projects, or to replace one catalog with another.

In this paper we introduce a new Grid service called the Replica Reg-
istration Service (RRS). It can be thought of as an abstraction of the
concepts for registering files and their replicas. In addition to traditional
single file registration operations, the RRS supports collective file regis-
tration requests and keeps persistent registration queues. This approach
is of particular importance for large-scale usage where thousands of files
are copied and registered. Moreover, the RRS supports a set of error
directives that are triggered in case of registration failures. Our goal is
to provide a single uniform interface for various file catalogs to support
the registration of files across multiple Grid projects, and to make Grid
clients oblivious to the specific catalog used.

1 Introduction

Managing a large number of files at distributed locations is one of the challenges
that many large-scale scientific experiments face. For efficiency reasons, many
of the files are replicated in multiple storage systems. In order to keep track of
the files and their replicas, various file and replica catalogs are used. Typical
questions are: What is the name-space for files registered in the catalogs? Shall
the catalog be organized as a centralized or decentralized service? How can
information about files be retrieved efficiently? How can different sites interact
with each other’s catalogs? In order to solve some of these issues, various Grid
projects have developed different catalogs for keeping track of their data files.
Some experiments use specialized file catalogs, others use distributed replica
catalogs to reference files at different locations. This diversity of catalogs makes it
very hard to manage files across Grid projects or even within a single project. The
solution to this problem is not to attempt and standardize a particular file catalog

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 100–112, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

RRS: Replica Registration Service for Data Grids 101

system. Rather, the approach taken here is to provide a uniform specification of
a functional interface that permits the multiplicity of catalogs to co-exist. This
approach is similar to many commercial products (such as relational database
systems) that have a common functional interface specification that permits
multiple systems to co-exist. Furthermore, our approach isolates the Grid client
programs from the specific catalog system used.

In this paper we introduce a Grid service called the Replica Registration Ser-
vice (RRS), that provides a uniform functional interface to various file catalogs,
replica catalogs, and meta data catalogs. It can be thought of as an abstraction
of the concepts used in catalog systems to register files and their replicas. Some
experiments may prefer to support their own file catalogs (which may have their
own specialized structures, semantics, and implementations) rather than use a
standard replica catalog. Providing a RRS that can interact with such a catalog
can permit that catalog to be invoked as a service in the same way that other
more general-purpose replica catalogs do. If at a later time the experiment wishes
to change to another file catalog, it is only a matter of developing a RRS for
that new catalog and replacing the existing catalog. Similarly, an existing replica
location service (RLS, [3]) that supports the RRS interface can be plugged in
instead of the current catalog. In addition, some systems use meta-data catalogs
or other catalogs to manage the file name-spaces, and those could be accessed
through the same RRS interface as well.

The main contributions of this paper are as follows:

– We introduce a novel Grid service - the Replica Registration Service. We
discuss the design considerations and the main functional interface compo-
nents.

– We report on our experience of using an early implementation of a RRS
in a production environment. The results show that the RRS could greatly
simplify the management of replicas and reduce registration errors.

2 Related Work

An early version of a replica management framework is presented in [4] where the
terms Replica Management and Replica Selection are defined within the context
of a Data Grid. In the European Data Grid Project a similar replica management
framework was implemented [7]. An integrated approach for data and meta-data
management is provided in the Storage Resource Broker (SRB) [1]. In general,
data replication can be done at the file or object level, where multiple objects
can either be stored in a single file, or a single object can be stored across
multiple files. The differences between object and file replication are discussed
in [13]. However, in practice only file replicas are cataloged so far, since the
number of objects can be much larger than the number of files. Moreover, the
implementation of object replication systems is more complex. For this reason,
we focus on file replica registration only in this paper.

In the early days of Grid computing, replicas were stored in LDAP catalogs.
Due to performance issues, subsequent replica catalogs or replica location ser-

102 A. Shoshani, A. Sim, and K. Stockinger

vices stored the replicas in relational databases [3]. In recent projects, various file
and replica catalogs were implemented for different experiments that are often
not compatible [2,6].

Currently, different organizations that use the Grid, develop their own spe-
cialized version of replica catalogs. They vary in their functionality greatly. For
example, some support GUIDs and LFNs, some support only a single LFN;
some support logical and physical directories and some only a single level; some
include extensive meta-data information, such as file usage and some have no
meta-data at all. Our purpose in this paper is to identify a reasonable set of
replica registration functionality independent of any specific implementation.
We hope that this approach will provide a uniform interface that will allow for
multiple implementations to co-exist.

3 Terminology and Name-Space

3.1 GUIDs, LFNs, and PFNs

There are several ways to refer to a file. If the location of the file is known,
one can specify its Physical File Name (PFN). However, since a file may have
multiple replicas, it is convenient to refer to the file by using Logical File Names
(LFN). Some communities of users prefer to support a unique immutable LFN
for each file, and provide a mapping between the LFN and one or more Physical
File Names (PFNs). In many cases, LFNs are designed to be structured names.
This is a desired property, since the file name conveys a meaning, such as the
date, purpose, or conditions that were used at the time the file was generated.
However, having such structured names makes it difficult to guarantee global
uniqueness of the name. Furthermore, there may be a need to change file names
over time, or even have multiple aliases for a file name. For this reason, some
communities use a globally unique identifier, referred to as GUID, to identify a
file, in addition to a LFN. Given that a GUID is used for a file, that file can now
have multiple LFNs that are treated as name-aliases for the GUID.

Since we wish to have this specification applicable to all communities, we
adopt the more general case of having a GUID for a file. In addition, we permit
multiple LFNs per GUID. For communities that only use a single LFN and no
GUID, we consider that LFN to be equivalent to a GUID.

The one-to-many relationships between a GUID-to-PFNs and a GUID-to-
LFNs are shown schematically in Figure 1. Note that we use SURL (Site URLs)
as a generalization of PFNs. The reasons for that are explained next in Section
3.2.

3.2 SURLs as a Generalization of PFNs

Specifying a Physical File Name (PFN) is straightforward. It is specified as a
URL made of the format: protocol://machine:port/directory-path/file-name.For
example: gridftp://cs.berkeley.edu/home/data. Note that the protocol specified
in this case is the transfer protocol.

RRS: Replica Registration Service for Data Grids 103

Fig. 1. The relationships between SURLs, GUIDs, and LFNs

Some storage systems support multiple physical devices and multiple directo-
ries, and may want to have the freedom of changing the physical location of a file
without changing the reference to it by Grid clients. An example of a software
layer that permits this functionality is a Storage Resource Manager (SRM) [9].
The SRM is a single endpoint for accessing a file regardless of its physical loca-
tion on a particular site. The site is a virtual entity referring to the collection of
resources under the administrative control of the site manager. The concept of
a site permits a single filename to be assigned to a physical file regardless of it
physical storage location.

The reference for a file on a site is called a Site URL (SURL). For exam-
ple: srm://data.berkeley.edu:4004/dir/data is the name of a file managed by a
SRM residing on the machine data.berkeley.edu, on port 4004. When request-
ing the file from the SRM using the SURL, the SRM returns the transfer URL
(TURL) which is the actual PFN. For example, for the file above the SRM
may return the PFN on another machine, cs.berkeley.edu, by using the URL
gridftp://cs.berkeley.edu/home/data. Note that a PFN is a special case of an
SURL, where the transfer service specified by the protocol is the site endpoint.
Therefore, we only use SURL in the remainder of this document.

3.3 The LFN Name-Space Structure

LFNs are commonly organized into directory structures, similar to any file sys-
tem (such as the Unix file system). Some file systems consider directory names
as LFNs as well and assign GUIDs to them (this can be automatically assigned
by the catalog). The value of treating directories as LFNs is that one can refer
to a directory path in a similar way as a reference to a file. In this specification
we allow the creation and removal of directories and references to them, so that
systems that support this feature will be accessible through the RRS. This is
shown schematically in the box referring to LFNs in Figure 1 by having the
directory icon in it.

A common use case for using multiple LFNs is that a file is first registered
with a particular LFN, and then additional LFNs are allowed to refer to the same
file. The original registration is sometimes referred to as the primary LFN, and
subsequent references to it are referred to as secondary LFNs or as LFN-aliases.

104 A. Shoshani, A. Sim, and K. Stockinger

We do not find this distinction generalizable, useful, or necessary. Therefore we
refer to all LFNs in the same way regardless of when they were defined. Thus,
the RRS interface does not permit references to primary LFNs, only to LFNs.

3.4 File Attributes

File attributes are associated with GUIDs as shown in Figure 1. These attributes
represent only global properties that do not depend on where the file resides (the
SURL site) and how it is named (its LFNs). Some attributes are considered es-
sential to verify the correctness of file transfers. These attributes are: fileSize,
checkSumType, and checkSumValue. We refer to these attributes as core at-
tributes. In addition, there may be other attributes that the underlying catalogs
may store. We permit the entry and retrieval of all such attributes through the
RRS interface. When requesting these attributes, one can refer to core attributes
only, or to “all” attributes. The RRS will return an array of triples: fileAttribute-
Name, fileAttributeType, and fileAttributeValue. Note that all values are passed
through the interface as strings. The fileAttributeType refers to the type of the
attribute, as it is stored in the underlying catalog. The RRS was designed to
have functions to retrieve the attribute values.

4 Replica Management Architecture

Before discussing the Replica Registration Service, we provide an outline of the
replica management architecture which is based on the following three compo-
nents: (a) the Replica Selection Service (RSS), (b) the Replica Copying Service
(RCS), and (c) the Replica Registration Service (RRS). This is shown in Figure 2.

Given a GUID or a LFN of a file that has to be replicated to a target site, the
Replica Management Service (RMS) first invokes the RRS in order to find all pos-
sible replicas. It can then choose to ignore some of these replicas based on its own

Fig. 2. Replica Management Architecture

RRS: Replica Registration Service for Data Grids 105

policies, such as getting replicas only from a certain region of the world. The RMS
can then invoke the RSS. The RSS’s function is to order the replicas according
to cost estimates of copying the physical files to the target site. In order to deter-
mine the copying costs, the RSS may consult variousmonitoring services. Once the
physical file is selected for copying, the RMS invokes the RCS in order to copy the
file to its target destination. Note that the RMS may not choose the source replica
with the smallest cost. It may choose a site based on policy information about what
sites to avoid (for example, to prevent bottlenecks at some sites). The RCS may
use various data copying services, such as the Reliable File Transfer (RFT) service
[8], Storage Resource Managers (SRMs) [9], or the DataMover [11] service that re-
lies on SRMs. After each file is copied, the RMS can communicate with the RRS
in order to register the files. Depending on the mode requested, the RRS registers
the files immediately or in a delayed mode. The RRS interacts with a file catalog,
a replica catalogs, and/or a meta data catalog depending on its configuration.

The orchestration between the services is mainly the coordination between
copying and registration of files. As discussed above, the client should be provided
with a choice of modes, such as register only if the entire multi-file copying is suc-
cessful, or register only the files that were successfully copied and report failures.
However, in addition to coordination between the underlying services, the RMS
can be expected to provide the functionality of recovering from failures. For ex-
ample, suppose that a specific physical file was selected to be copied to the target
location, and that the copying failed because the file was not found (it could have
been removed in the interim). The RMS can then select an alternative physical
file from another site based on the information provided by the RSS. This type of
functionality is expected from a well-functioning, robust, service. For this purpose
one or more RRSs can be known to the RMS as part of this configuration.

5 RRS Design Considerations

In this section we outline the functionality of the Replica Registration Service. A
detailed discussion of the interface can be found in [10].

The functionality of the interface specification is split into two parts, namely,
the Basic API and Advanced API. The Basic API covers file registration, unreg-
istration, and command status operations. The Advanced API introduces file at-
tributes and name space management. A summary of the most important com-
mands is given in Tables 1 and 2. In this paper we only discuss the design consid-
eration of the Basic API. The Advanced API is similar to familiar file management
functions and is therefore not discussed here.

5.1 Registration Functions

All the registration functions are for files only. Files can be referred to by their
GUID, LFNs, or SURLs. We use the term file references to refer to any of these

106 A. Shoshani, A. Sim, and K. Stockinger

Table 1. Basic API

Command Explanation

Register Functions

openCollectiveRegistration Prepare for multiple registration calls with specific
registration mode and error directive. The system returns
a request token.

register Register one or more file references using the request token.
closeCollectiveRegistration Close a specific collective registration using the request

token.
getRegistrationStatus Retrieve information on file status (done, in progress,

pending) and error codes (file not found, already exists,...).
abortRegistration Stop registration request and unregister files.
unregister Unregister files.
getUnregisterStatus Retrieve status of unregister request.

Discovery Functions

getFileReferences Retrieve GUID, LFN and SURLs of a given file reference.
getFileReferenceStatus Retrieve status of file reference.

Table 2. Advanced API

Command Explanation

Attribute Functions

getFileAttributes Get file attributes such as checkSum or fileSize.
getFileAttributesStatus

Name Space Management

makeDirectory Create a directory and register it in the catalog.
removeDirectory Remove directory.
listDirectory List the content of a directory.
getListDirectoryStatus

names. All registration requests are made of pairs of file references, such as (LFN,
SURL). The first item of this pair is referred to as given and the second item as
toBeRegistered. For example, register (LFN, SURL) is interpreted as for the given
LFN, register the SURL. Similarly, register (SURL, SURL) is interpreted as for
the given (first) SURL, register the (second) SURL. In such cases, the RRS may
need to get first the GUID for the existing file reference (if it is not a GUID), and
then register the second file reference using the GUID. In some cases, we allow a file
reference to be null, such as the first-time registration of a LFN without providing a
GUID, denoted as (–, LFN). In this case, it is expected that the underlying catalog
will generate the GUID. This is explained in more details in the section on first-
time and subsequent registration.

Note that from the discussion above, it is obvious that all registration actions
are for file references. However, in the remainder of this article we often use the
term register a file as a short form for register a file reference.

RRS: Replica Registration Service for Data Grids 107

Collective Registration. The RRS is designed to allow the coordination be-
tween copying and registration of files. Because copying a large number of files can
be a slow process, it is necessary to allow the registration process to be a long-
lasting activity. Therefore, it is necessary to have a way of specifying the begin-
ning and the end of multiple registrations. This is achieved by starting with an
openCollectiveRegistration function, followed by one or more register functions,
and ending with a closeCollectiveRegistration function.

Registration Modes. As one or more files are registered, the RRS can use dif-
ferent modes of registration as requested by the user. A client may prefer that files
be registered one-at-a-time as soon as each file is copied successfully, or may pre-
fer to register all the files only after the entire request of copying multiple files
(or entire directories) is successful. We refer to the desired behavior as the regis-
tration mode. Accordingly, the two registration modes supported are: continuous
and atEnd. continuous means: register as soon as possible, and atEnd means: reg-
ister all the files after the closeCollectiveRegistration function is called. Another
advantage of this choice is that it allows the burden of accumulating the deferred
registration of multiple files (until all the copying is finished) to be placed on the
RRS; that is, the RRS has to accept and manage delayed registration requests.
Thus, the client or the component calling the RRS does not have to save the de-
ferred registration requests. Instead, it can pass them on to the RRS.

The implementation of the registration modes behavior depends on the target
catalog. Some catalogs permit bulk registration of files, a feature that the RRS
can choose to take advantage of. Some may prefer a limited number of files in the
bulk registration (such as 100 at a time), and some may allow only a single file
registration at-a-time. The RRS has to perform the registration as close as possible
to the requested mode.

Error Directives. Registration to the underlying catalog(s) may result in unre-
coverable errors. Typical errors are that a GUID, LFN or SURL is not found. For
example, registering an SURL for an given LFN may result in an error that the
LFN was not found, or that the SURL already exists.

Under failure conditions, clients may prefer different behaviors. We refer to this
as error directives. These can be specified at the time the collective registration
request is initiated with the openCollectiveRegistration function. Three error di-
rectives are supported:

– stop: register files until a non-transient error occurs and stop.
– stopAndUndo: register files until a non-transient error occurs, stop, and unreg-

ister all the files submitted for registration so far (undo).
– continue: record the error and continue registering files.

If a registration request involves thousands of files, it may be unwise to stop
or undo the entire request because of a single error. It may be better to permit a
few errors before the error directive gets triggered. We allow for such a parameter,
called the error directive trigger, to be set as an integer. Regardless of whether the
trigger occurs, the RRS records all such errors.

108 A. Shoshani, A. Sim, and K. Stockinger

First-Time and SubsequentRegistration. The registration of files into a cat-
alog requires the distinction between a first-time registration, and subsequent reg-
istrations. During a first-time registration, a unique GUID needs to be provided
by the requester, or is automatically generated by the underlying catalog GUID
generation service. Some simple file catalogs use the source physical file name, that
was first registered, as the GUID. In other catalogs the GUID is generated by its
own GUID generator that guarantees a globally unique identifier. Our goal is to
have a single Replica Registration Service (RRS) that can accommodate special
purpose file catalogs (such as a file catalog of a scientific experiment), catalog ser-
vices (such as the RLS), or other more general catalogs.

As mentioned above, all file registrations have pairs of file references, such as
(LFN, SURL). For subsequent registrations the first item of this pair is referred
to as given and the second item as toBeRegistered. Thus, the given item has to be
found in the underlying catalog, while the second item should not exist. In contrast,
for first-time registration, such as (GUID, LFN), both items need to be registered,
and therefore both should not exist in the underlying catalog.

When a subsequent registration is requested, the RRS needs to verify that the
given file reference is already registered. For example, a registration of a (GUID,
SURL) implies that a new SURL is registered for that GUID. The RRS needs to
check that the GUID already exists, and also check that the SURL does not exist.
To allow full flexibility, we allow the registration of a LFN or a SURL given an
existing GUID, LFN, or a SURL. This can simplify the client interaction with the
RRS. For example, register (LFN, SURL) may require the client to get the GUID
for the LFN first from a meta-data catalog, and then register the (GUID, SURL)
to a replica catalog. The RRS is designed to save the client from having to do this
extra step.

To summarize, all registration requests are made of pairs of file references. For
first-time registration, the registration of (GUID, LFN) or a (GUID, SURL) im-
plies that the first file reference, the GUID, needs to be registered as well, and
therefore should not exist. In subsequent registration, the first file reference must
exist and the second file reference should not exist in the underlying catalogs. The
RRS relies on the underlying catalogs to verify correctness. Therefore, catalogs
should provide verification of the existence of file references.

5.2 Unregister Function

The unregister function can be used to refer to a registration previously made by a
collective registration request by using the request-token. The most general case is
when only a request-token is provided without any specific file references. This is
interpreted as global-unregister that means unregister all the file reference registra-
tions in that request. However, since this is a global operation, and can cause serious
difficulties if a mistake is made, we added a flag called unregisterCollectiveRequest
that also has to be set. Note that we do not consider unregisterCollectiveRequest
meaningful before the closeCollectiveRegistration function is called, and there-
fore will return an error in that case, saying cannot unregister entire request before
closeCollectiveRegistration is called.

RRS: Replica Registration Service for Data Grids 109

All the other cases to consider are requests to unregister specific file references.
The specification of what to unregister can be done using pairs of file references.
Similar to the subsequent register case, for the unregister function the first file ref-
erence in the pair is interpreted as given and the second as toBeUnregistered. For
example, unregister (LFN, SURL) is interpreted as for the given LFN, unregister
the SURL.

We note that a request to unregister some files can be issued while a collective
registration request is in-progress (i.e. not closed yet) and therefore some of the
files that need to be unregistered may still be in the RRS queue. In such a case
the RRS needs to remove these requests from the queue, and unregister files that
were already registered. Specifically, the RRS should suspend the collective regis-
tration process, perform the unregistration as requested, and then continue with
subsequent registration requests. The same is the case after the request is closed,
but the actual registration is still in-progress. The RRS needs to check the status
of the request, and act accordingly.

6 Replica Registration Service in Production Use

We have implemented a Replica Registration Service (RRS) for the STAR ex-
periment which has been used in production for over a year now. The STAR ex-
periment [12] is a high-energy nuclear physics experiment producing real data at
Brookhaven National Laboratory (BNL). The data files are replicated daily from
BNL to another laboratory, Lawrence Berkeley National Laboratory (LBNL) for
post-processing and analysis. The registration of the files at the LBNL site was
done manually or by using scripts, a process that was prone to errors. In produc-
tion, there are several thousands of files registered per month, for a total volume
that averages more than 5 Terabytes.

The RRS now used in the STAR experiment automated the registration process,
and practically eliminated the error rates (from about 1% to 0.02%), according to
the person in charge of the replication operation [5]. The RRS was implemented as
a daemon module that listens for information provided by the component respon-
sible to replicate the files, called a DataMover [11]. The DataMover interacts with
two Storage Resource Managers (SRMs), one at the source site (BNL) and one
at the target site (LBNL). When the target SRM receives a file and archives it, it
notifies the RRS. It is the responsibility of the RRS to register the files. The regis-
tration is made to a STAR file catalog (which uses a relational database, MySQL),
by invoking a script. The production setup is shown in Figure 3.

The RRS was implemented having three modes: continuous, every-n-files, and
at-end. In the continuous mode, the RRS tries to register each file immediately.
In the every-n-files mode, the RRS queues the registration requests until it has n
files, and then registers then n files in a single bulk registration. In the at-end mode,
the RRS waits till the replication of the entire set of files is successful, and only
then registers them. Another function of the RRS is to make sure that successful

110 A. Shoshani, A. Sim, and K. Stockinger

registration occurs when the File Catalog is temporarily unavailable. If the File
Catalog is busy or down, the RRS keeps trying periodically until the registration
is successful. This alleviates the burden from the client of having to keep track of
successful registrations. Initially we experimented with the every-n-files mode of
registration. However, we found that in this application of large-scale continuous
replication, the continuous mode was effective as the every-n-files mode.

Fig. 3. Replica Registration Service used in production for a physics experiment

It is worth mentioning that we considered the option of having the RRS being a
client that pulls the information from the SRM, but this design would require the
RRS to poll the SRM continuously. We chose, instead, to implement the RRS as a
daemon, so that the SRM can push the information to the RRS. This reduced the
communication overhead significantly. However, a more general replication service
may choose to poll the SRM or the target storage system, and then notify the RRS
of files that were already transferred.

The RRS was designed to interact with various catalogs, where most of the code
is reusable and only the request to register files changes depending on the target
catalog. By having a uniform interface it should be possible to replace one catalog
by another if necessary without effecting the client programs.

In general, a Virtual Organization (VO) can use multiple RRS services. The
coordination between these RRS services must be done by the RMS layer accord-
ing to their configuration for keeping track of file assignments to storage systems.
However, this is a VO issue that is beyond the scope of this paper.

RRS: Replica Registration Service for Data Grids 111

7 Conclusions

In this paper we introduced the Replica Registration Service (RRS) that provides
a uniform interface to various file catalogs, replica catalogs, and meta data cata-
logs. The RRS supports collective file registration requests and keeps persistent
registration queues for large-scale usage where thousands of files are registered.
The RRS also supports a set of error directives that are triggered in case of reg-
istration failures. This work is a first step toward standardizing the access of file
and replica catalogs to allow interchangeability of such systems.

Acknowledgment

We want to thank Jean-Philippe Baud, James Casey, Ann Chervenak, Peter Kun-
szt, Reagan Moore, and Robert Schuler for their comments on the specification
and possible extensions of the RRS interface. We also thank Viji Natarajan for
providing the current implementation. This work was supported by the Director,
Office of Science, Office of Advanced Scientific Computing, of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098.

References

1. C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage Research Broker.
In CASCON’98, Toronto, Canada, 30 November - 3 December 1998.

2. J.-P. Baud and J. Casey. Evolution of LCG-2 Data Management. In Computing in
High Energy Physics, Interlaken, Switzerland, September 2004.

3. A. Chervenak, E. Deelman, I. Foster, L. Guy, A. Iamnitchi, C. Kesselman,
W.Hoschek,M.Ripeanu,B. Schwartzkopf,H. Stockinger,K. Stockinger, andB.Tier-
ney. Giggle: A Framework for Constructing Scalable Replica Location Services. In
Super Computing 2002, Baltimore, USA, November 2002.

4. A. Chervenak, I. Foster, C. Kesselman, and C. Salisburyand S. Tuecke. The Data
Grid: Towards an Architecture for the Distributed Management and Analysis of
Large Scientific Datasets. Journal of Network and Computer Applications, 23, 2001.

5. PPDG Collaboration. Physics results from the STAR experiment at RHIC benefit
from production Grid data services. http://www.ppdg.net/docs/oct04/ppdg-star-
oct04.pdf.

6. P. Kunszt et al. EGEE gLite User’s Guide - Overview of gLite Data Management.
Technical Report EGEE-TECH-570643-v1.0, CERN, Geneva, Switzerland, March
2005.

7. P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. File-based Replica Manage-
ment . Future Generation Computer Systems, 22(1), 2005.

8. R. Madduri, C. Hood, and W. Allcock. Reliable File Transfers in Grid Environments.
In 27th IEEE Conference on Local Computer Networks, Tampa, Florida, November
6 - 8 2002.

9. A. Shoshani, A. Sim, and J. Gu. Storage Resource Managers: Essential Components
for the Grid. In Grid Resource Management: State of the Art and Future Trends, 2003.
Edited by J. Nabrzyski, J. M. Schopf, J. Weglarz, Kluwer Academic Publishers.

112 A. Shoshani, A. Sim, and K. Stockinger

10. A. Shoshani, A. Sim, and K. Stockinger. Replica Registration Service - Functional
Interface Specification 1.0. Berkeley Lab, Berkeley, California, April 2005.

11. A. Sim, J. Gu, A. Shoshani, and V. Natarajan. DataMover: Robust Terabyte-
Scale Multi-file Replication over Wide-Area Networks. In Scientific and Statistical
Database Management, Santorini Island, Greece, June 2004.

12. The STAR Experiment. http://www.star.bnl.gov/.
13. H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney. File

and Object Replication in Data Grids. Journal of Cluster Computing, 5(3), 2002.

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 113 – 128, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Datagridflows: Managing Long-Run Processes
on Datagrids

Arun Jagatheesan1,2, Jonathan Weinberg1, Reena Mathew1, Allen Ding1,
Erik Vandekieft1, Daniel Moore1,3, Reagan Moore1, Lucas Gilbert1,

Mark Tran1, and Jeffrey Kuramoto1

1 San Diego Supercomputer Center,
University of California, San Diego,

9500 Gilman Drive, MC0505, La Jolla, CA 92093
{arun, jonw, alding, moore, iktome, kuramoto}@sdsc.edu

{rmathew, evandeki}@cs.ucsd.edu
mixx@umail.ucsb.edu

mdtran@ucsd.edu
2 Institute of High Energy Physics and Astrophysics,

University of Florida,
Gainesville, FL 32611

3 Department of Computer Science,
University of California, Santa Barbara, CA93106

Abstract. This paper is an introduction to Datagridflows. Until recently, datagrids
were generally considered over-hyped and the associated technologies not widely
embraced in the academic community. Today, datagrids have become a reality
and an important technology for managing large, unstructured data and storage re-
sources distributed over autonomous administrative domains. The datagrids that
are operating in production provide us an idea of new requirements and chal-
lenges that will be faced in future datagrid environments. One such requirement is
the coordinated execution of long-run data management processes in datagrids.
We term these processes as “datagridflows”. This new area provides exciting op-
portunities and challenges to researchers in distributed computing and distributed
databases. This paper is intended to introduce these challenges to other research-
ers, including those new to grid computing. We provide motivation through dis-
cussion of datagridflow requirements and real production scenarios. We intro-
duce current work on datagridflow technologies including the Datagrid Language
(DGL) for describing datagridflows in datagrids.

1 Introduction

Datagrid technology is currently used for managing very large, unstructured data stor-
age resources [1, 2, 3]. The need for long-run data management processes on top of
datagrid environments is seen as a common emerging requirement in most datagrid
deployments. Examples of these long-run processes include datagrid information lifecy-
cle management, datagrid triggers, and data-intensive computational workflows. These
long-run processes could be considered “datagrid workflows” and are discussed later in
this paper. We refer to these long-run datagrid processes as datagridflows.

114 A. Jagatheesan et al.

In the following section, we introduce some fundamental concepts in datagrids for
the benefit of those new to grid computing. In section 2, we describe three motivating
scenarios for datagridflows and our work on the Data Grid Language. We discuss the
requirements and components of a system to manage datagridflows in section 3. In
section 4, we provide some overview of our work on the Data Grid Language as part
of the SRB Matrix Project. Related and future works to this paper are presented in
section 5.

1.1 Data Grid Landscape

In this section, we introduce datagrids, associated concepts and relevant terminology
to prepare the reader for the problem statement discussed in the following sections.

Grid Computing. We describe a “grid” as a coordinated distributed computing infra-
structure, formed by combining heterogeneous resources from autonomous adminis-
trative domains. Grids provide the infrastructure that is used for large-scale, resource-
intensive, and distributed applications. The definition of a Grid is continually evolv-
ing as different people have different perspectives of the same technology. The com-
monality that is observed in the different perspectives of the “Grid” is the formation
of a logical infrastructure as a single ensemble, by dynamically combining independ-
ently managed resources.

Datagrid. A datagrid is a logical unified view of a grid’s data storage infrastructure.
Data storage middleware create a federated, location independent, logical infrastruc-
ture namespace that dynamically spreads across the grid’s administrative domains.
Datagrids support sharing data collections and storage resources between autonomous
administrative domains. A shared collection is a logical aggregation of digital entities,
(e.g.) files, which are physically distributed in multiple physical storage resources that
are owned by multiple administrative domains. A shared resource allows users from
multiple administrative domains to share data storage space. The core concept behind
the success for datagrid software is the concept of “data virtualization”.

Data Virtualization. Data Virtualization is the concept of bringing together different
heterogeneous data and storage resources into one or more logical views so that the
distributed and replicated data appear as a single logical data source managed by a
single data management system. This logical view is simple for users and applications
as it hides the complexity of working with distributed and heterogeneous systems.
The logical view is provided on top of a logical resource namespace, allowing high
levels of flexibility for distributed computing and migration of data storage resources.
Data and resource names are logical and can be physically changed or migrated with-
out affecting the applications. The underlying concept behind the datagrids and data
virtualization is the same as the concept behind relational databases: to isolate physi-
cal organization of the data from logical schema. In data virtualization, we go one
step further. Instead of completely hiding the physical organization of the storage
resources where the data resides, another logical namespace of storage resources is
provided to the applications. Applications now have the added capability to perform
distributed data management operations on the combined logical data namespace

 Datagridflows: Managing Long-Run Processes on Datagrids 115

along with logical resource namespace without having to directly interact with the
physical storage resources or the physical organization of data.

 There has been a significant increase in use of datagrid technology over the past
few years. Data storage infrastructures using datagrid technologies are deployed in
many countries. Much of the data managed by these technologies is in the form of
files. One of the popular datagrid management systems (DGMS) [1], the SDSC Stor-
age Resource Broker (SRB) [2], is believed to broker around a Petabyte of data
worldwide at the time of this writing.

Multiple independent organizations deploy the SRB middleware on top of their ex-
isting physical storage resources without any changes to the existing system. The
existing physical storage resources are represented in the SRB datagrid namespace as
logical storage resources. Each SRB storage server that runs on top of a physical stor-
age system maps that particular physical storage system into the data grid logical
resource namespace. Many organizations participate in a data grid. Users can view
and use the resources of users from other organizations given appropriate access per-
missions and authentication mechanisms. Users use any logical resource from the data
grid logical resource namespace using the SRB protocol without even knowing where
the resource is physically located or what type of physical storage resource is actually
used. In addition, users can create an aggregated logical view of distributed data in the
form of shared collections, enabling them to have the same logical namespace or data
organization even if when the data is moved. Thus, the data namespace or the logical
view of the data in the grid is independent of infrastructure and location information
for the end users.

2 Long-Run Processes in Datagrids

The widespread use of datagrids has helped us observe several common usage pat-
terns in datagrid environments that require long-run datagrid processes. In this sec-
tion, we present the three prominent patterns that we have observed. These motivate
our work on datagridflows.

2.1 Data Grid ILM

Information Lifecycle Management (ILM), as described in the data storage industry,
refers to the dynamic re-orientation of data placement and data retention strategies
based on storage cost and the “business value” of the data to be managed. The term
“business value of data” refers to the value certain data or information provides to the
business requirements. Unlike traditional Hierarchical Storage Management (HSM)
solutions, which normally use “data freshness” as the most important attribute in
determining data placement, ILM solutions use data value and business policies to
determine data placement and retention. It must be mentioned that in most business
cases a high value of data freshness will automatically yield a high business value for
the data. Hence, ILM could be considered an extension of HSM.

In a datagrid, information in the form of several related data collections would
have a lifecycle that spans multiple organizations. Information in the datagrid could

116 A. Jagatheesan et al.

be created by one organization, accessed or replicated by other organizations, and
archived at yet another organization before finally being deleted from the datagrid.

During its lifecycle, information in the grid would have different business values
for different domains participating in the datagrid. This value is based on the needs of
a particular domain’s users and the role played by that domain in the data grid. For
example, data being created might be of interest to the domain that is creating it.
Later, some other domain in the data grid might have more value for the same infor-
mation. We refer this as domain-specific value as “domain value”. Organizations
could create replicas of the same data in their own domains as the domain value of
certain data grows. Once a domain’s users are not interested in some information, its
domain value decreases and data can either be deleted or migrated to less expensive
storage systems. A change to data storage organization with respect to domain value
of some information is called a “datagrid ILM processes”. These changes usually do
not involve any transformation of data. They could involve replication, migration or
removal of existing data, changing access permissions on some data before they are
migrated or archived, etc.,

In addition to changes in the domain users’ interest in information that could initi-
ate the ILM processes, the role played by a domain in the datagrid could also initiate
ILM processes. In some cases, one of the domain’s roles in the data grid could be just
to archive all or some selected information in the datagrid. This could be a third-party
service provider or an IT department for the enterprise responsible for archiving data.
The archiver domain might not have any real users who are interested in the informa-
tion – but its business processes are interested in archiving the information. The ar-
chiver domain could store the information for years, before finally moving it the low-
est cost data storage system from a long-term storage management perspective. The
archiver domain could be an example for what we refer to as an “imploding star”.
Information from all the domains in the datagrid is finally pulled towards this domain.
This certainly involves a very well planned archival schedule. An example for this
type of imploding star is the BBSRC-CCLRC data grid [3]. In the BBSRC project,
information from multiple hospitals in United Kingdom are finally archived into an
archiver site.

The complement of the imploding star based datagrid ILM is the “exploding star”.
In this case, information is pushed or replicated outside the domain of its creation. For
example, the datagrid created for the CMS High Energy Physics experiment at CERN
has many domains that require the data generated by the CMS experiment to be repli-
cated in stages at different tiers across the globe. The CERN domain thus acts as the
exploding star. Domains can play other roles such as a “data curator” role in a digital
library that is powered using the data grid technology.

We can observe some commonalities and generic requirements in these datagrid
ILMs. All of them require long-run processes on top of the datagrid namespaces.
These long-run processes could be started, stopped and restarted at any time. For
example, an ILM process could only be run at some domains during non-working
hours or on weekends. This would require powerful and highly flexible systems to
manage these datagrid ILM processes. A requirement from digital libraries and persis-
tent archives, like the National Archives Persistent Archives Test bed (NARA PAT)
[4] is to preserve the provenance information associated with these ILM processes.
The requirement is to enable the storing of provenance information for not only the

 Datagridflows: Managing Long-Run Processes on Datagrids 117

DGMS operations performed by the system, but also the operations that are per-
formed as part of the archival pipeline.

Currently, some simple datagrid ILM processes can be implemented using simple
scripts and cron jobs on some operating systems. System administrators are familiar
with these scripts. However, once the requirements include multiple domains, multi-
ple system administrators and multiple ILM processes, more sophisticated systems are
required to handle problem. The proposed new systems for datagrid ILM must sup-
port:

• Start, stop, pause and restart of datagrid ILM Processes
• Query the status of the any datagrid ILM any time
• Provenance information of all the processes managed at any time even (years)
 after the execution
• Programmatic API to define these datagrid ILM and programmatic interface
 for interaction by other systems
• Programmatic API to query and monitor any step in the datagrid ILM process

One major requirement is to provide an interoperable description of the datagrid

ILM processes. A standard format could be used across all the related systems like
datagrids, grid file systems, digital libraries, persistent archives and dataflow systems.
Such a standard based on an XML Schema would allow programmatic interaction of
all the systems. The proposed XML schema must support the definition of ILM proc-
esses of various complexities. The schema must describe all relevant entities, includ-
ing data, resources, and users. The schema would have to be programmatically de-
scribed and executed dynamically as the constraints associated with these processes
are dynamically modified.

2.2 Datagrid Triggers

The datagrid namespace is a logical view of data and storage resources. A datagrid
trigger is a mapping from any event in the logical data storage namespace to a process
initiated in the datagrid in response to such an event. Datagrid triggers are defined on
top of the datagrid namespace and could have the following components.

Event. An event could be any change in the datagrid namespace including updates,
inserts, and deletes. Datagrid triggers could be triggered before or after events com-
plete. Unlike database transactions datagrid processes or not transactional. The results
of applying the trigger-based mechanisms on this non-transactional, large-scale, dis-
tributed data management system have not yet been studied.

Condition. Trigger execution is determined by the evaluation of some state informa-
tion in the datagrid. This is very similar to the database Event-Condition-Action (ECA
rules) based processing used in database rules.

Actions. An Action is the execution any data management process on the datagrid
namespace. Multiple actions could be performed based on the evaluation of the condi-
tion associated with the trigger.

118 A. Jagatheesan et al.

 Datagrid triggers will play an important role for managing unstructured data in
datagrids. Simple use-cases include: creating metadata when a file is created, sending
notifications when specific types of files are ingested, and automating replication of
certain data based on their meta-data.
 Datagrids allow user-defined metadata to be associated with data. Triggers could
make use of these parameters. There are many open research issues here. Datagrid
management systems (DGMS’s) [1] will allow multiple users to define triggers. Dif-
ferent results might be produced based on the order in which triggers defined by mul-
tiple users are processed for the same event. Further complicating the situation is the
non-transactional nature of datagrid processes.

In databases, the Structured Query Language (SQL or PL/SQL) can describe the
triggers and the DBMS executes associated actions. A similar language is required for
DGMS’s to describe triggers with respect to files, the metadata that are associated
with those files, data collections, data storage resources, etc. Such a language should
support data types such as collections and datasets. The proposed language could also
be used to describe constructs in datagrids similar to “stored procedures” in databases.
This will allow the datagrid stored procedures to be run from the DGMS itself rather
than executing the procedure outside the DGMS using client side components. We
introduce “Data Grid Language” (DGL) as a possible solution for this later in this
paper.

2.3 Data-Intensive Workflows

The last motivation that we want to mention regarding long-run processes in datagrids
is the use of the datagrid infrastructure to perform scientific or computational work-
flows on unstructured data. Such workflows are sometimes referred to as “scientific
workflows” because they are often used in certain scientific applications, but the as-
sociated concepts apply equally for non-scientific workflows that require intensive
processing.

Grid-workflow is the automation of a business process whereby data and tasks are
passed from one grid-participant to another according to some set of procedural rules.
A single grid workflow process could have multiple tasks that might have to be exe-
cuted at different domains participating in the grid. The dynamic scheduling of these
tasks to the different participating domains could be based on the combined cost all
the tasks together at different domains. The cost of executing each task at a domain
could be based on multiple parameters including the amount of data moved, the num-
ber of CPU cycles that would be left idle in the grid, the clock time taken to execute
all the tasks, the bandwidth utilized, etc. The cost is just an approximate value based
on certain heuristics used by the scheduler.

During their execution, Grid-workflows must consider different logics: the busi-
ness process logic, the execution logic and the infrastructure logic as explained below.

Business Logic. Business logic is a representation of the specific business task that
takes part in the workflow. Some examples of business logic are: processing an order-
entry form (e-business), determining a document type while archiving it in the proto-
type for National Archives Workflow (document management), or any transformation
used in scientific pipelines (scientific workflow). The isolation of the business logic

 Datagridflows: Managing Long-Run Processes on Datagrids 119

from the complexities involved in datagrid computing provides ease of development
of the business logic. The business logic development team need not be concerned
with scaling up its solution or taking advantage of the distributed nature of the data-
grid. They should only be required to describe the requirements in terms of resource
types and the service levels required to execute the business logic. Business logic is
usually in the form of binary executables that could be run on appropriate platforms in
the datagrid.

Infrastructure Logic. Infrastructure Logic refers to the logic that has to be used
while matching the tasks in the workflow with the appropriate resources and domains
within the grid infrastructure. Infrastructure logic would involve the description of
available resources in the infrastructure, the service level agreements (SLAs) the
resources can support, the preferred type of users or tasks that could be executed on
each resources, etc. Infrastructure logic could also involve heuristics that are supposed
to be used by a Datagridflow Management System (DfMS) while scheduling the tasks
to the different resources in different domains.

The DfMS would have to map the requirement of each business logic task to the
appropriate resources required. The workflow description would dictate what types of
resource are required at what SLAs. The description might be just a logical or abstract
specification of the type of resource required rather than a specific physical system.
This allows dynamic binding to a particular resource at runtime. The workflow de-
scription is used by DfMS along with Grid Resource Brokers to bind the task with
appropriate resources. For example, the workflow description might logically specify
that a particular task would require an archival system, a high-performance file sys-
tem, or a certain number of compute nodes. Infrastructure logic on the other hand,
would specify the mapping from these logical resource types with the physical end-
points and the SLAs that can be supported. The system administrators could change
the infrastructure logic based on their own domain requirements, assuring them full
autonomous control over what resources are shared with other grid users and at what
SLAs.

Execution Logic. Execution logic provides the control-flow and ordering of tasks that
take part in the workflow. Execution Logic is provided by the end-user or the
workflow designer. It provides a description of the workflow execution, identifying
the tasks that take part in the workflow, the order in which they should be executed,
the relationship among them, their input and output data sets, etc.

Execution logic also has information on the state of execution. This information
can be checked before execution of any process. Fault handling information for the
processes could also be provided in the execution logic. Execution logic could remain
independent of the infrastructure dependencies allowing late binding of resources.
However, a workflow designer could still choose to specify a particular resource in-
stead of leaving it abstract to be bound later.

Execution logic also captures the requirement to run tasks for a specified number
of times or until some milestone is reached. This is very useful in datagrids where the
workflow involves iterating some set of tasks over collections of files. The files are
used as input data and processed according to a datagrid query, which could be part of

120 A. Jagatheesan et al.

the execution logic itself. This allows configuration of runtime parameters by chang-
ing the execution logic rather than configuring the business logic and recompiling the
associated code. The execution logic could be viewed as the abstract definition of a
workflow without concrete descriptions of the underlying physical infrastructure.

Infrastructure-based Execution Logic. The Execution Logic is converted dynami-
cally into Infrastructure-based Execution Logic just before the execution of the tasks
that are described in the workflow. This is a multi-stage hierarchical process. An
analogy for this process could be the query re-writing or optimization of SQL before a
final query plan is generated and executed by the databases. The description of the
execution logic is rewritten into infrastructure-specific execution logic based on mul-
tiple factors including: the requirements of the task, availability of resources, the
physical locations of the input or output data, the presence of “virtual data” [5] or
“virtual services” [6] and other infrastructure heuristics.

Iterations or milestones present in the execution logic would require a small sec-
tion in the description of the execution logic, a group of tasks, to be dynamically
converted into infrastructure-based execution logic multiple times. The group of
tasks, a small section of the execution logic for a single iteration, would have to be
dynamically converted into infrastructure-based execution logic very late in the
processes just before execution. This late binding allows execution of the each it-
eration at a different location based on the infrastructure availability just before the
tasks are executed.

The scheduling or selection of the appropriate resources for each task has to choose
the location for execution of a task based on: the available physical locations of input
data (replicas), desired physical location of the output data, location of the business
logic (code) and the available resources where the task can be executed. If the re-
quired output data is already available (virtual data), it need not be derived again. The
final infrastructure-based execution logic for each task would have the chosen replica
to use as input, the location of the output data and the grid resource to use. In a data-
grid, the replica selection could be handled by the DGMS itself based on location of
execution of the process.

All the execution logic associated with the Grid-workflow must be generated pro-
grammatically and exchanged among the participating resources. This includes the
datagrid execution logic and infrastructure-based execution logic. The Data Grid
Language described in the following sections could be used for to describe these sets
of logic. Even though multiple workflow languages are already available, the exis-
tence of datagrid-related data types and operations as part of the language itself makes
it the suitable language to describe these grid-based data-intensive processes that take
part in scientific workflows.

In this section, we have surveyed three of our major motivating scenarios in detail
and their requirements with respect to datagrid technology. One common observation
from all these scenarios is the need for datagridflows on top of datagrid systems. An-
other requirement that has been mentioned in all the scenarios is the need for a lan-
guage to describe the long-run processes in the datagrid. In the next section, we intro-
duce Datagridflows and their requirements.

 Datagridflows: Managing Long-Run Processes on Datagrids 121

3 Datagridflows

Datagridflow is the automation of a long run process whereby data and/or tasks are
passed from one datagrid participant to another according to a set of procedural rules.
Datagridflows are data-intensive long run processes like datagrid ILM, datagrid trig-
gers, or computational workflows in a datagrid environment. Datagridflows could be
viewed as a subset of regular workflows that involve long-run processes on datagrids.
Most of the data processed is unstructured, file-like data.
 Workflow systems have been around for many years. There are many ways to
hard-wire workflows and develop a system that uniquely satisfies a single user’s re-
quirement. This approach is easy for the developers to begin with as they can use any
of their favorite programming languages to hard-wire the tasks involved in the work-
flow. However, from a long-term perspective, this approach is not optimal and it
becomes extremely expensive to maintain the code that supports the whole system.
Any change in the execution logic or the infrastructure logic would require modifica-
tion of the whole system. A generic system would be useful for the datagrid commu-
nity, which has clear needs to manage datagridflows, as can be seen in multiple pro-
jects including National Archives Persistent Archive Test bed Project [4], Southern
California Earthquake Center [7], CCLRC-BBSRC project [3] and LLNL UCSD
SciData Management Pipeline.

3.1 Generic Requirements for a Datagridflow Management System (DfMS)

The challenge is to provide a generic system that can manage most of the datagrid-
flow requirements faced by these data-intensive projects. The common patterns that
we observe from our users’ requirements when they want to manage their datagrid-
flows:

• Data-intensive flows: Most of the projects that use datagrid technology usually
have large data collections. DfMS must take full advantage of the underlying
DGMS software that provides all the functions required to manage the very
large unstructured data.

• Scalability: DfMS must be scalable in terms of the number of tasks within a
single workflow; number of workflows that can be processed, and the number
of resources the workflows can physically take advantage of to complete a
workflow.

• Collections and Files: Most of the data that is processed in a DfMS is in the
form of collections and files. DfMS’s must support these data types and the
operations that can be supported on collections and files in a datagrid.

• Highly Flexible: Most of these projects will deploy the DfMS in production for
at least five years. Over this time, many requirements, probably unknown dur-
ing requirements analysis, will emerge. The system should therefore be flexi-
ble to handle new requirements.

• Cost of Operation: Having one more software system to manage increases the
Total Cost of Operation (TCO) of the project. DfMS must minimize the main-
tenance requirements and the system administrator should not have a need to
learn another system.

122 A. Jagatheesan et al.

• Provenance: DfMS must have manage information about all workflows and
their tasks. This information would be queried and audited later.

• Novice and Expert Users: DfMS must have a GUI-based system to interact
with novice users and an API based interface for developers and expert users
to programmatically interact with the DfMS

• Distributed Grid Infrastructure: DfMS must take advantage of the distributed
grid infrastructure while executing its operations

• Task Granularity: Workflow designers should have the flexibility to design
datagridflows with each task that is not too small and not too large to be called
a task.

The above requirements are generic for both business and academic/scientific

workflows. Similar business use cases would be observed once business users start
using datagrids and the Grid File System (GFS) [9].

3.2 Components of a Datagridflow System

The following are the components of a hypothetical Datagridflow System from a
high-level perspective.

Datagridflow IDE (GUI). A Datagridflow modeling interface would serve as an
Integrated Development Environment (IDE) for end-users to interact with the DfMS.
A modeling markup language describes datagridflows and stores it locally for the
users to use again or view the datagridflow rendered on the IDE. MoML [8], used in
Ptolemy II/Kepler uses, this approach to serve as a datagridflow IDE.

Datagrid Language (DGL). A language to describe, query, and manage execution
logic and infrastructure-based execution logic. The SRB Matrix uses this approach. A
DGL document could be created by the IDE and sent to the DfMS server for process-
ing. More on DGL is provided in the next section.

DfMS Server. The DfMS server can service DGL requests both synchronously and
asynchronously. DfMS server manages state information about all the tasks, which
can be queried at any time. The DfMS server works on top of the datagrid server
(DGMS) and can support the datagrid operations provided by DGMS. In the SRB
Matrix project [10], the Matrix Server uses SRB as its DGMS. Multiple DfMS servers
can form a peer-to-peer datagridflow network with one or more lookup servers. DfMS
servers could have additional capabilities to directly interact with the DGMS server,
allowing the users to create Datagrid Triggers and Datagrid ILM jobs at the DGMS it
self. The DfMS server can provide the concepts of virtual data by incorporating a
virtual data system as a component. The GriPhyN Chimera System is an example of
such a component that could be present in the DfMS server.

Infrastructure Description Language. The Infrastructure Description Language
describes the infrastructure at each domain and the different SLAs they can support.
Infrastructure includes data storage resources, compute resources, DGMS server loca-
tion etc.

 Datagridflows: Managing Long-Run Processes on Datagrids 123

Grid Schedulers and Brokers. Grid schedulers and brokers act as intermediaries,
that do the planning and matchmaking between the appropriate tasks in a workflow
with the resources that are available. They are used to convert the abstract execution
logic into concrete infrastructure-based execution logic. Tools are available for plan-
ning and scheduling on the grid. One such tool is the GriPhyN Pegasus planner [11].

4 The Data Grid Language

We have discussed the need for a datagrid language as part of our motivating scenar-
ios. Just as SQL is used for databases, an analog is needed for datagrids. Our contri-
bution to the datagridflows and the datagrid community is the Datagrid Language
(DGL), which is useful for all of our motivating scenarios. DGL is an XML-Schema
specification that can be extended for domain-specific operations and used by any
community.

DGL explicitly supports data types such as datagrid collections, files and datagrid
operations as part of the language it self. This enables the description of file-based
flows and datagrid collection processing. DGL can be used to describe datagridflow
processes, queries, and status. The language is designed to work with a protocol based
on a request-response model. In addition to request-response, DGL can also be used
with one-way messages also. The requests can be synchronous or asynchronous.

Fig. 1. Structure of a Flow

124 A. Jagatheesan et al.

DGL describes each task of a datagridflow as a “Step” with associated input and
output parameters. One or more steps are aggregated into “Flows”, which are recur-
sive control structures that describe how to execute steps. Each flow is like a block of
code in modern programming languages with its own variable scope, commands, and
steps. Each flow defines a unique control pattern that dictates how its contents should
be executed, e.g. sequentially, in parallel, while loop, for-each loop, switch-case, etc.
These patterns are very similar to any modern programming language. Using these
control structures recursively, users can create arbitrarily complicated gridflow de-
scriptions. Figure 1 shows the schema definition for a flow in DGL.

Each DGL transaction generates a unique identifier that can be used to query the
status of the any task in the workflow at any level of granularity. The identifier for
any particular task or flow can be shared with all other processes that require access to
the status of the particular task or flow.

DGL also supports user-defined, Event-Condition-Action rules. This enables an
event-based model for datagridflow programming. More information about DGL can
be found in Appendix A of this document.

DGL has been used in prototype runs for managing datagridflows at the UCSD Li-
braries and SCEC Project. Datagridflow for data-integrity and MD5 calculation was
described in DGL and executed by SRB Matrix servers for the UCSD Library data.
SCEC workflow for ingesting files into the SRB datagrid was also performed using
DGL [14].

5 Related and Future Work

Multiple efforts are underway to tap the power of the grid infrastructure and to man-
age long run process or workflows. There are clear differences in the objective and/or
approach taken by each of these efforts. Some of the projects working in related areas
are mentioned here.
 GridAnt [12] is a client-side workflow engine that provides scripting support to
initiate and manage the workflow. The state information of the workflow is managed
at the client side. GriPhyN Pegasus [11] could be used as planner in a grid workflow
to avoid redundant computation of existing data products. Pegasus is used as a com-
ponent in GriPhyN Virtual Data System [5]. Kepler [13] is an effort to provide an
extensible IDE and full system for scientific workflow (which are also long run proc-
esses). Additionally, there are multiple workflow related efforts, which are based
either on Web/Grid Service Composition or on Process Ordering.

Our current work in the SRB Matrix Project is to support our existing SRB users
with these datagridflow requirements. We are also working on providing a rich GUI
(IDE) to DGL using VERGIL GUI (used in Ptolemy II and Kepler). The user inter-
face will be defined by the MoML modeling language, with execution taking place
using the DGL.

There are many research issues that would be interest to others, including:

• Peer-to-peer datagridflow network and its protocols
• Distributed data scheduling for datagrid ILM policy strategies for enterprises
• Dynamic datagrid scheduling based on heuristics at different domains

 Datagridflows: Managing Long-Run Processes on Datagrids 125

 Datagridflows is an emerging field that presents some exciting challenges. Data-
grid users already require powerful peer-to-peer datagridflow networks. More work
would help the community understand more about the requirement and the usefulness
of different approaches taken.

6 Conclusions

Datagridflow is an emerging field that supports the proliferation of datagrid technol-
ogy by addressing the new requirements of datagrid users. Datagridflows enable users
to automate or semi-automate tasks in the datagrid. Many more challenges and oppor-
tunities are present for researchers from distributed computing and distributed data-
bases.

Acknowledgement

This work was supported by NSF GriPhyN, NPACI REU and SDSC REU. We
would like to acknowledge Peter Berrisford of CCLRC, UK; David Little, UCSD
Libraries; and Marcio Faerman and Phil Macheling of the SCEC project for providing
us descriptions of their datagridflows requirements in their projects.

References

1. Moore, R.W., Jagatheesan, A., Rajasekar, A., Wan, M. and Schroeder, W., “Data Grid
Management Systems,” Proceedings of the 21stIEEE/NASA Conference on Mass Storage
Systems and Technologies, 2004, Maryland.

2. Rajasekar, A., Wan, M., Moore, R.W., Jagatheesan, A. and Kremenek, G., “Real Experi-
ences with Data Grids – Case-studies in using the SRB,” Proceedings of 6th International
Conference/Exhibition on High Performance Computing Conference in Asia Pacific Re-
gion (HPC-Asia), December 2002, Bangalore, India

3. BBSRC-CCLRC Data Grid. Web site: (http://www.e-science.clrc.ac.uk/web/projects/
bbsrc_grid_support)

4. Archivist Grid Website: http://www.sdsc.edu/Press/2004/04/040904_PersistenArchives.
html

5. Foster, I., Voeckler, J., Wilde, M. and Zhao, Y., “Chimera: A Virtual Data System for
Representing, Querying, and Automating Data Derivation”. In Scientific and Statistical
Database Management, (2002).

6. Jagatheesan, A., Moore, R., Rajasekar, A. and Zhu, B., “Virtual Services in Data Grids”,
In the 11th IEEE International Symposium on High Performance Distributed Computing
(HPDC), July 2002, Scotland.

7. Southern California Earthquake Center, SCEC: http://www.scec.org/cme
8. Edward A. Lee and Steve Neuendorffer. MoML — A Modeling Markup Language in XML

— Version 0.4. Technical report, University of California at Berkeley, March, 2000
9. Arun Jagatheesan, “Architecture of Grid File System”, Gridforge. https://forge.gridforum.

org/projects/gfs-wg
10. SRB Matrix Website: http://www.sdsc.edu/srb/matrix

126 A. Jagatheesan et al.

11. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. Su, K. Vahi and M.
Livny , “Pegasus: Mapping scientific workflows onto the grid,” Across Grids Conference
2004, Nicosia, Cyprus.

12. Kaizar Amin and Gregor von Laszewski, GridAnt: A Grid Workflow System. Manual,
February 2003 http://www-unix.globus.org/cog/projects/gridant/

13. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J.
Tao, Y. Zhao, “Scientific Workflow Management and the Kepler System”, Concurrency
and Computation: Practice & Experience, Special Issue on Scientific Workflows.

14. Weinberg, J., Jagatheesan, A., Ding, A., Fareman, M. and Hu, Y., “Gridflow Description,
Query, and Execution at SCEC using the SDSC Matrix, ” Proceedings of the 13th IEEE
International Symposium on High-Performance Distributed Computing (HPDC), June 4-6,
2004, Honolulu, Hawaii, USA.

Appendix

A Structure of DGL

A DGL document is a XML based description that could be either a Data Grid Re-
quest or Data Grid Response. A Data Grid Request is sent from a client to the DfMS
server. Currently, the DfMS server uses a request-response paradigm and replies with
a Data Grid Response for each request.

Figure 2 shows the structure of a Data Grid Request. It contains general informa-
tion including: Document metadata, Grid user information and the Virtual Organiza-
tion to which the user belongs. The Data Grid Request’s core component is either a
Flow or a FlowStatusQuery. A Flow describes a workflow to be executed and a
FlowStatusQuery is a query on the status of execution of a Flow at any granular level.

Fig. 2. Structure of a DataGridRequest

The Flow is a recursive data structure that represents the gridflow execution. It
contains more recursive Flows or Steps (called its “children”). Abstractly, we can
think of a Flow as an execution environment or a block of code that sets up a scope
and behavior for its children execute (e.g. sequentially, in parallel, for-loop, etc).

 Datagridflows: Managing Long-Run Processes on Datagrids 127

As shown in Figure 1, each Flow contains three sections:

• Variables – A Flow can declare any number of variables for use in its scope
• FlowLogic – This component dictates the logic by which the contents should

be executed (e.g. sequentially, in parallel, etc)
• Children – Sub-flows or steps (but not both), which will be executed within

this Flow’s scope according to its FlowLogic.

FlowLogic
The FlowLogic element contains two sections: the first is a choice of control struc-
ture (e.g. sequential, parallel, etc) that dictates how the children of this Flow will be
executed. The second is a set of UserDefined Rules that encapsulate the actions that
the Flow should take upon starting up and before exiting. Figure 3 shows the Flow-
Logic schema.

Fig. 3. flowLogic schema

Before it starts execution, a Flow will execute the user-defined rule named “be-
foreEntry” if one is defined in its FlowLogic. After finishing execution, it will exe-
cute the rule “afterExit” if one is defined.

128 A. Jagatheesan et al.

User Defined Rule
A UserDefinedRule is similar to a switch statement in programming languages. A
UserDefinedRule consists of a condition and one or more action statements. The con-
dition is represented using tCondition. Tcondition is a usually simple string that is
evaluated. It is possible to use DGL variables in the Tcondition. Each UserDefine-
dRule has one condition and can have one ore more Actions. Each action has a
(string) name associated with it. The Actions are executed if the condition statement
evaluates to the name of the action.

Step
A Step is a concrete action that a gridflow performs. A Step can declare variables and
userDefinedRules just like a Flow, but contains a single element called an Operation.
The operation describes some atomic operation that the gridflow is to execute. DGL
supports a number of DataGrid related operations for SDSC’s Storage Resource Bro-
ker (SRB) or execution of business logic (code) by the DfMS server.

Data Grid Response
A Data Grid Response is sent by the DfMS to the client for every Data Grid Request.
The design for Data Grid Response facilitates both synchronous and asynchronous
requests. Synchronous Data Grid Requests are replied after the execution of the flow
with a Data Grid Response that contains the status of flow. Asynchronous Data Grid
Requests are replied with a Request Acknowledgement inside the Data Grid Re-
sponse. Request Acknowledgement contains a unique identifier for each request and
the initial status of the request and its validity. Clients can use this identifier to get the
status of the execution of the flow. The figure below shows the structure of a DGL
Data Grid Response.

Fig. 4. Data Grid Response

Servicing Seismic and Oil Reservoir Simulation Data
Through Grid Data Services�

Sivaramakrishnan Narayanan, Tahsin Kurc, Umit Catalyurek, and Joel Saltz

Department of Biomedical Informatics,
The Ohio State University, Columbus, OH, 43210

{krishnan, kurc, umit, jsaltz}@bmi.osu.edu

Abstract. This paper presents the implementation of a two layer infrastructure
for servicing queries against large datasets generated in oil reservoir simulation
studies in the Grid. The first layer implements object-relational virtualization
of file-based dataset stored on a storage cluster. The second layer provides an
implementation of Grid Data Services via Open Grid Services Architecture Data
Access and Integration (OGSA-DAI) middleware.

1 Introduction

In an increasing number of engineering and science fields, the volume of data generated
and processed is in the order of terabytes. Simulation-based oil reservoir management
studies are an example of applications that generate and reference large volumes of sim-
ulation and experimental data. The objective is to develop complex numerical models
of subsurface reservoirs and use these models to efficiently search for alternative oil
production strategies in order to optimize profits and minimize adverse effects to the
environment [20,28]. In this optimization process, there is a need to provide support
for management and querying of large volumes of data, generated by simulations or
collected from field measurements, in order to be able to refine model parameters and
determine the next set of simulations to be carried out. In addition, the datasets can be
generated and stored at multiple locations, since the computational requirements of the
simulations may require use of machines at supercomputing centers.

There has been considerable progress in Grid computing technologies in recent
years. In addition to a wide array of middleware systems and tools, a services-based
view of the Grid has emerged. In this view, data sources and applications are exposed
to the environment using standard interfaces. Users interact with the resources through
well-defined Grid services protocols. In this way, the complexities and heterogeneity
of individual resources can be hidden from clients and greater interoperability among
applications can be achieved.

� This research was supported in part by the National Science Foundation under Grants #ACI-
9619020 (UC Subcontract #10152408), #EIA-0121177, #ACI-0203846, #ACI-0130437,
#ANI-0330612, #ACI-9982087, #CCF-0342615, #CNS-0406386, #CNS-0426241, Lawrence
Livermore National Laboratory under Grant #B517095 (UC Subcontract #10184497), NIH
NIBIB BISTI #P20EB000591, Ohio Board of Regents BRTTC #BRTT02-0003.

J.-M. Pierson (Ed.): VLDB DMG 2005, LNCS 3836, pp. 129–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

130 S. Narayanan et al.

Several core functions need to be supported in an end-to-end system for enabling
data-driven scientific applications in a Grid environment. These functions include man-
agement of data types and metadata, virtualization of data sources and data subsetting,
data product generation (e.g., data aggregates from data subsets), and Grid services
interfaces. In our work, we develop an integrated suite of middleware components to
support these functions. These middleware components are shown in Figure 1. In this
suite, DataCutter, which is a component-based middleware, enables combined use of
task- and data-parallelism and is used to support data product generation (e.g., aggre-
gates of data subsets) [7]; STORM [22,23] provides virtualization of file based datasets
as object-relational tables and support for data subsetting; Mobius [19] supports man-
agement of data definitions and data types as XML schemas, XML virtualization of
data, and metadata management. In an ongoing project, we are integrating these mid-
dleware systems with the Open Grid Services Architecture Data Access and Integration
(OGSA-DAI) middleware toolkit [24] to allow access to the functionality provided by
these components via OGSA-DAI Grid services protocols.

Schema Management

SQL Virtualization of
Files

Data Product Generation

Mobius

XML Virtualization
Metadata Management

Mobius

DataCutterSTORM

Grid Protocols

OGSA-DAI

OGSA-DAIOGSA-DAI

OGSA-DAI

Fig. 1. Middleware components and toolkits to support data-driven scientific applications in the
Grid

In this paper, we describe the design and implementation of a layered infrastruc-
ture for serving large, distributed datasets generated in oil reservoir simulation studies
in a Grid environment using STORM and OGSA-DAI. The first layer in our infras-
tructure implements support for efficient use of distributed storage clusters and enables
object-relational virtualization of file-based datasets. This layer builds on the STORM
middleware framework. The second layer leverages the existing work in the Grid com-
munity to provide integrated access to datasets served by multiple STORM instances.
This layer is implemented using the OGSA-DAI middleware toolkit. We describe the
integration of STORM as a data source in OGSA-DAI and present a preliminary per-
formance evaluation of the integrated system.

Servicing Seismic and Oil Reservoir Simulation Data Through Grid Data Services 131

2 Oil Reservoir Management Studies

Effective oil reservoir management requires accurate characterization of the reservoir
properties and efficient management strategies that involve optimized placement of pro-
duction and injection wells. Simulation-based oil reservoir management is a viable ap-
proach to evaluate different optimization strategies and to understand changes in reser-
voir properties over long periods of time [20]. The main steps of this optimization pro-
cess are shown in Figure 2. Various production strategies (i.e., the number of place-
ment of injection and production wells) are simulated using a numerical model of the
reservoir under study. In addition, changes in reservoir characteristics (e.g., rock prop-
erties) over time are tracked by seismic data simulations (or seismic measurements in
the field). Data obtained from seismic and reservoir simulations are stored for analysis.
The data analysis processes subsets of seismic simulation datasets and reservoir simu-
lation datasets in order to generate summary data such as production rates over a time
period, bypass oil regions in the reservoir, and rock properties in the reservoir. The re-
sults of the analysis can be used to refine the reservoir models, simulate new production
strategies, and collect additional seismic data.

In this section we briefly describe the oil reservoir simulation and seismic data simu-
lation applications, the characteristics of their datasets, and the types of queries executed
by users.

Fig. 2. Oil Reservoir Management

2.1 Oil Reservoir Simulation

A good understanding of fluid and rock properties in an oil reservoir is necessary for
designing optimized production strategies. Since only a partial knowledge of critical
parameters such as rock permeability in the reservoir is available, it is desirable to in-
corporate geologic uncertainty in complex reservoir models. An approach is to simu-
late alternative production strategies with varying number, type, timing and location of
wells, applied to multiple realizations (simulation runs) of geostatistical models. This
approach can lead to large volumes of output data [28].

132 S. Narayanan et al.

Simulations are performed on a three-dimensional mesh over several time steps.
Each realization corresponds to different geostatistical models and different number of
wells and well placements. At each time step, the value of seventeen separate variables
and cell locations in 3-dimensional space are output for each cell in the grid. Common
analysis scenarios involve queries for economic evaluation as well as technical evalua-
tion, such as determination of representative realizations and identification of areas of
bypassed oil. Examples of client requests include “Find all the potential bypassed oil
cells between time T1 and T2 in realization A.” and “Retrieve the oil saturation values
at all mesh points from realizations A and B between time steps T1 and T2; visualize
the results.”.

2.2 Seismic Data

The physical characteristics of a reservoir change over time. These changes in reservoir
material properties should be detected and incorporated into reservoir models. Seismic
surveys of the reservoir can be used to track changes [20]. Seismic data is recorded
as sound traces generated by multiple sound sources on the surface and sampled by
receivers at the bottom and on the surface of the reservoir. The sound traces are used to
infer subsurface material properties. The surveys can be either carried out in the field or
simulated using the seismic models of the reservoir.

A seismic dataset is stored in files in a standard exchange format, referred to as
SEGY, defined by the Society of Exploration Geophysics. A seismic data file consists
of a 3600-byte header followed by a record for each sound trace. Each record contains
a 240-byte header and the sound trace. The header information stores the metadata
associated with the sound trace including sound source id, receiver id, receiver location,
the number of samples stored for the trace. Traces collected for a single sound source
are usually stored in a single file. When numerical models are used to generate seismic
data, each data file can be up to 25 Gigabytes in size and there can be thousands of
data sources simulated, resulting in datasets ranging from a few terabytes to hundreds
of terabytes in size.

Seismic data can be used in creating subsurface images and predicted subsurface
material properties. The reservoir model can be revised by imaging and inversion of
output from seismic data simulations. Imaging analysis requires that subsets of seismic
data be selected based on, for example, the type of sensor in a recording array and for
each or a suite of sources.

3 System Support

An end-to-end system to address the data management requirements of oil reservoir
management studies in a Grid environment should provide a range of functions. The
overall system architecture is illustrated in Figure 3. In this architecture, Mobius can
be used to support management of metadata associated with simulation runs, seismic
field measurements, and analysis results. The structure of data types can be managed
by the Mobius schema management services. The support for data product generation
(e.g., reconstruction of 3D volumes from seismic data, visualization of reservoir results)
is provided by DataCutter. The STORM middleware can be used to support SQL-style

Servicing Seismic and Oil Reservoir Simulation Data Through Grid Data Services 133

select queries against large simulation datasets stored in distributed collection of files on
a cluster of storage nodes. These components can be exposed to the Grid environment
via OGSA-DAI service interfaces and can be accessed by clients using Grid Service
protocols. In this section, we describe our implementation of the data subsetting support
using STORM and OGSA-DAI.

Our goals are to enable efficient execution of data subsetting operations on large vol-
umes of simulation data and to facilitate querying of datasets generated and maintained
at multiple sites. To achieve this, some issues should be considered. First, datasets from
engineering simulations are usually stored in files rather than in database management
systems and files may have different formats. Second, storage requirements of datasets
and computational cost of data subsetting operations on large data volumes could be
very high. Finally, datasets should be made available to the community (Grid environ-
ment) using standard interfaces so that disparate user groups can interact with them in
a unified way.

Fig. 3. A Grid-based Oil Reservoir Management System

In order to address these issues, we developed a layered architecture consisting of
two interacting components. The first component addresses the first two issues by im-
plementing a data virtualization layer at the data source and provides support for data
subsetting operations on distributed and parallel storage clusters. The second compo-
nent addresses the third issue by providing a Grid-services standardization layer and
implements support for integration of datasets across multiple instances of the first com-
ponent. We have built the first component on our STORM middleware framework. The
second component leverages the OGSA-DAI infrastructure. Next, we briefly present an
overview of STORM and OGSA-DAI followed by the description of implementation
of the runtime support.

134 S. Narayanan et al.

3.1 STORM

STORM [22,23] is a services-oriented framework designed to support processing of
large datasets in a distributed environment. It provides basic database support for 1)
selection of the data of interest from scientific datasets stored in files and 2) transfer
of selected data from storage nodes to compute nodes for processing. The current imple-
mentation is based on a component infrastructure, called DataCutter [7], which supports
distributed execution of networks of application-specific data processing components.
Using the DataCutter runtime support, STORM can perform parallel I/O on distributed
data and execute data selection and data filtering operations on heterogeneous collec-
tions of storage and compute clusters.

In order to support data subsetting on file-based datasets, STORM implements three
abstractions: virtual tables, select queries, and distributed arrays. The first two ab-
stractions are based on object-relational database models [31]. SELECT operation of
the form shown in Figure 4 are supported on virtual tables. Data elements selected
by the SELECT operation are grouped based on a computed attribute. In the figure,
the < Expression > statement can contain value-based selections and range queries.
Filter allows implementation of user-defined operations that are difficult to express
with simple comparison operations.

The client program that carries out data processing can be a parallel program. In that
case, the distribution among client nodes of the data elements returned as the result of
the query can be represented as a distributed array. This abstraction is incorporated
into the STORM framework by the GROUP-BY-PROCESSOR operation in the query
formulation. ComputeAttribute is another user-defined function that generates the
attribute value on which the selected data elements are grouped together based on the
application specific partitioning of data elements.

SELECT < Data Elements >
FROM Dataset1, Dataset2, ..., Datasetn

WHERE< Expression > AND < Filter(< Data Element >) >
GROUP-BY-PROCESSORComputeAttribute(< Data Element >)

Fig. 4. Database queries supported by STORM

3.2 OGSA-DAI

The Grid has emerged as an integrated infrastructure for distributed computation
[11,14]. The Open Grid Services Architecture (OGSA) [13] defines mechanisms for
creating, managing, and exchanging information among entities called Grid services.
The objective of the OGSA-DAI [24] initiative is to build upon the OGSA infrastructure
to deliver high level data management functionality for the Grid. It defines services and
interfaces that can be used by clients to specify operations on data resources and data.
OGSA-DAI services can be configured and customized to expose a specific database
management system.

Servicing Seismic and Oil Reservoir Simulation Data Through Grid Data Services 135

STORM
Data Source

STORM
Instance

Extractor

Filter

Data Mover

STORM Deamon

STORM JDBC Driver

GDS Instance

Fig. 5. Exposing STORM via OGSA-DAI

3.3 System Implementation

In STORM, in order to expose a new database, the application developer must provide
implementations of two base interfaces: Index and Extractor. Relevant metadata associ-
ated with datasets should also be stored in the metadata services. In our implementation,
metadata information associated with seismic dataset consists of the names of the data
files that make up the dataset and the names of the data attributes, which include sound
source id, receiver id, survey date, and source and receiver coordinates. A client can
submit queries to the system on these attributes. Seismic datasets are stored as a set
of files, each of which corresponds to sound traces collected from one or more sound
sources. We implemented an extraction object which reads a record from the data file,
extracts the dataset attributes from the header along with the trace data, and forms a tu-
ple consisting of the attribute values and the trace data. We used an R-Tree [18] to index
the dataset. We followed a similar implementation strategy for oil reservoir simulation
datasets. A detailed description of the implementation can be found in [22].

The Grid Data Service (GDS) is the central OGSA-DAI component. OGSA-DAI
provides default implementation of a Grid Data Service (GDS) that can expose
databases that implement the JDBC interface. In order to take advantage of this, we
have developed a JDBC driver implementation for STORM. This allows the default
GDS implementation to use a standard interface to communicate with the STORM run-
time. The JDBC driver also exposes the metadata corresponding to the tables (virtual
tables) that the particular STORM instance serves.

When the GDS receives a SELECT query, it passes it on to the JDBC driver. The
JDBC driver parses the query into the internal format used in STORM and sends it to
the STORM daemon over a TCP/IP connection. Results are forwarded from STORM
to GDS via the JDBC driver, which implements the ResultSet interface. The JDBC
driver reads the results from STORM as a stream of bytes. It then parses the results into
appropriate Java objects. Note that parsing objects may also require conversion from
little endian to big endian format.

136 S. Narayanan et al.

STORM
Data Source

GDS GQES

GDQS DQP
Client

Query
Submission

Partial
Query Plan

STORM
Data Source

GDS GQES

Partial
Query Plan

Fig. 6. Querying multiple data sources using DQP, OGSA-DAI, and STORM

With this setup, a STORM instance can be exposed as a data source as is shown
Figure 5. A user wanting to submit a query over disparate data sources that are wrapped
by OGSA-DAI GDSs can also use the Distribute Query Processing (DQP) infrastruc-
ture, which implements a distributed query engine on OGSA-DAI data sources [2].
Figure 6 illustrates an instance of querying multiple data sources using STORM, DQP,
and OGSA-DAI layers.

It is possible that for some kind of queries, the JDBC driver of STORM may prove
to be a bottleneck. We incorporated a feature wherein the driver can interpret the data
it receives from the STORM daemon in different ways. For example, an 84 byte record
consisting of 21 floats may be interpreted as a single 84 byte array. The intuition be-
hind this is that it is less expensive to interpret a record as an array of bytes rather than
parse them into individual Java objects. This notion can be further extended to inter-
pret a sequence of records as a single larger record to reduce the number of operations
performed per record. We should note that this approach, however, will remove interop-
erability with OGSA-DQP since the DQP requires knowledge of individual attributes
to execute operations like PROJECT and JOIN.

4 Experimental Results

For the experimental evaluation, we used two PC clusters. The first one, called mob,
consists of 8 nodes equipped with dual 1.4 GHz AMD Opteron processors, 8 GB of
memory and 1.5 TB of disk storage in RAID 5 SATA disk arrays. The nodes are con-
nected to each other via a Gigabit switch. The second cluster, called xio, consists of
16 nodes, each node having two Intel Xeon 2.4GHz processors with hyper threading,
resulting in 4 virtual CPUs per node. Each node has 4GB of memory and is connected
to a distinct 7.3TB FAStT600 disk array. A detailed discussion of this cluster’s I/O ar-
chitecture can be found in [8]. We were able to achieve a raw I/O bandwidth (i.e., just
reading data from disk without any selection operations) of 2.69 GB/s using STORM
on the 16 xio nodes.

4.1 Comparison with MySQL

OGSA-DAI provides a default Data Resource implementation for MySQL. In our first
set of experiments, we carried out a preliminary performance comparison between
STORM and MySQL and their OGSA-DAI implementations. We generated tables with
6 floating point attributes, one of which is a unique attribute idf. No indexes were built
on the tables. Experiments were done on a single node in the mob cluster.

Servicing Seismic and Oil Reservoir Simulation Data Through Grid Data Services 137

0

10

20

30

40

0 250000 500000 750000 1000000

Query Size (num of records)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

MySQL
STORM
MySQL-DAI
STORM-DAI

0

20

40

60

80

100

120

0 50 100 150 200

Table Size (million rows)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

MySQL-cold
MySQL-hot
STORM-cold
STORM-hot

(a) (b)

Fig. 7. (a) Comparison of MySQL and STORM. (b) Effect of large tables.

In Figure 7(a), we compare the performance of MySQL and STORM for vary-
ing query sizes. Queries were of the form SELECT * FROM T100m WHERE idf
< N where N corresponds exactly to the number of rows returned by the query. Here,
T100m corresponds to a table with 100 million rows. We can see that STORM performs
better than MySQL. Both systems take almost constant time to execute these queries
because the scanning of the table takes up the bulk of the time. STORM’s OGSA-DAI
implementation is not as efficient as MySQL’s, especially for very large queries. We
attribute this to the fact that our current JDBC implementation is not well optimized.
There is a high variable cost associated per tuple. However, STORM’s implementa-
tion outperforms MySQL for queries smaller than 300,000 records. This is because the
fixed (startup) cost associated with STORM-DAI implementation is lower than that of
the MySQL-DAI implementation.

We should note that there are time and space overheads associated with importing
file-based data into a database. In our experiments, we observed that when data is im-
ported to MySQL using by piping the binary files via hexdump utility and using the
LOAD DATA INFILE command, the transfer time was about 600 seconds per GB of
data.

Figure 7(b) highlights the effect of growing table sizes on a query’s performance.
Queries were of the form: SELECT * FROM TXm WHERE idf < 10000.0where
X is the size of the table in million rows. The cold-cache lines correspond to case when
the filesystem’s cache is purged by reading a large file. STORM and MySQL have al-
most identical performance with the cold-cache. Our results show that I/O costs domi-
nate the execution time in the cold-cache case. The hot-cache experiments were done by
repeating the queries several times to allow for benefits of the filesystem’s caching. In
these experiments, STORM has a 40% improvement over MySQL, which we attribute
to the lower per tuple processing cost of STORM.

4.2 Oil Reservoir Dataset

In these experiments, we used a 315 GB size oil reservoir dataset. This data corresponds
to the simulation output of a single realization as described in Section 2.1. For every

138 S. Narayanan et al.

Table 1. The characteristics of the datasets used in the experiments

Dataset Attributes Record Size Records Dataset Size (GB) Cluster Name
(bytes) (millions) Number of Nodes

Oil Reservoir 21 84 3,840 315 mob, 3
Seismic 16 4,240 247 1,056 xio, 16

0

40

80

120

160

0 100000 200000 300000 400000

Query Size (number of records)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

STORM
STORM-DAI-o
STORM-DAI-1
STORM-DAI-50
3 DAIs

0

10

20

30

40

50

0 2000 4000 6000 8000 10000 12000 14000

Query Size (number of records)

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

STORM
STORM-DAI-o
STORM-DAI-1
2-DAIs

(a) (b)

Fig. 8. (a) Varying query sizes on oil reservoir simulation data. (b) Performance on Seismic Data.

time step, each point of three-dimensional grid is stored as a tuple of 21 attributes; the
values of seventeen separate variables, cell locations in 3-dimensional space and real-
ization id. Simulation is done over a grid of size 512× 512× 256 for 60 time steps (Ta-
ble 1). The dataset is partitioned across 3 data nodes such that each node has roughly 1/3
of the dataset. The dataset is indexed using an R-Tree [18] on the X,Y,T,SOIL,VX
attributes where X and Y are spatial attributes, T refers to the time step, SOIL is the
saturation of oil at the grid location and VX is the velocity in the X direction.

Figure 8(a) shows the timing results with varying query size. The queries involve
retrieving all data in a rectangular region over increasing intervals of time. The number
of records retrieved, thus, grows linearly. Since the dataset is indexed, there is almost no
excessive I/O and STORM takes about 2 seconds to execute these queries. The straight-
forward method of exposing this dataset, denoted by STORM-DAI-o is very inefficient,
due to parsing of 21 attributes in every record and creation of excessive number of Java
objects. Combinig all 21 attributes into a single array (see Section 3.3), shown by the
STORM-DAI-1 line, results in a significant gain in performance. STORM-DAI-50 com-
bines 50 records into a single array which further improves performance. Combining
larger number of records did not give us any further benefit. In Figure 8(a), 3 DAIs
shows the execution time when the dataset is distributed across three STORM-DAI-50
instances, each running on a single node. Each query was submitted to each STORM
data source (i.e., the sub-tables) and the results were collected at the client. Partitioning
the data across multiple data sources, improves parallelism among the STORM-DAI-50
instances resulting in better performance.

Servicing Seismic and Oil Reservoir Simulation Data Through Grid Data Services 139

4.3 Seismic Dataset

To characterize STORM’s performance on a single xio node, we considered a dataset
with a single file of size 11 GB compliant with the SEGY format described in Sec-
tion 2.2.

A base I/O rate of 193 MB/s was achieved using the dd unix utility on the xio node.
As with any pipeline, bandwidth achieved increased with query size till a limiting value
was reached. The bandwidth achieved at the end of the Extractor stage was 172 MB/s
and at the end of the Filtering stage was 122 MB/s. The end-to-end bandwidth seen
by the client was 55 MB/s. The memory-to-memory bandwidth, measured using the
memcpy routine was about 560 MB/s. This was an important factor as communica-
tion between stages of the pipeline involves packing and unpacking tuples into/from
buffers which involved a memory copy. Memory became the bottleneck that reduced
the bandwidth at each stage of the pipeline. This is a problem in systems where the
memory-to-memory bandwidth is comparable to I/O bandwidth. In our future work, we
will investigate the option of changing pipeline depth at compile-time based on machine
configuration.

In the next set of experiments, we used 96 seismic data files compliant with the
SEGY file format described in Section 2.2. Each file contained traces for a single sound
source, generated by a simulation using a seismic model of the reservoir and was 11 GB
in size. Files were evenly distributed across the 16 nodes of the xio cluster. The dataset
was indexed using an R-Tree on the RECV attribute that corresponds to the receiver
number for a particular trace.

Queries returned all records that involved a certain set of receivers denoted by a
range: SELECT * FROM segy WHERE RECV >= 1 AND RECV <= X where
we varied X linearly. The results of this experiment are shown in Figure 8(b). The
number of records returned by such a query is 96 ∗ X .

We employed similar techniques as in the previous experiments to improve the query
execution performance. For these queries, STORM performs the same amount of I/O
and filters out unwanted tuples. The fixed cost is therefore STORM’s startup costs, the
constant I/O and filtering costs. The variable cost is that of transferring the result of the
filtering operations. We can see that the naive OGSA-DAI implementation has a high
variable cost. Treating records as an array of bytes reduces this cost. Combining several
records into a single array, however did not cause any improvements unlike in the oil
reservoir experiments. This is because of the small number of rows returned by the
query. To further improve performance we set up STORM and GDS instances on two
nodes to serve half the table (each) and noticed a further improvement in performance.
This is reflected in the 2-DAIs line in the figure.

5 Related Work

Grid-technologies have been employed in several large-scale, multi-institutional
projects in a wide range of science and engineering domains [4,9,10,17]. GriPhyN
project [17] targets storage, cataloging and retrieval of large, measured datasets from
large scale physical experiments. The goal is to deliver data products generated from

140 S. Narayanan et al.

these datasets to physicists across a wide-area network. The objective of Earth Sys-
tems Grid (ESG) project [9] is to provide Grid technologies for storage, publishing,
and movement of large scale data from climate modeling applications. The EURO-
GRID project [10] intends to develop tools for easy and seamless access to High Per-
formance Computing (HPC) resources. The BioGrid component of the project im-
plements the support for a uniform interface that will allow biologists and chemists
to submit work to HPC facilities without having to worry about the details of run-
ning their work on different architectures. Biomedical Informatics Research Network
(BIRN) (http://www.nbirn.net) [25] initiative focuses on support for collaborative ac-
cess to and analysis of datasets generated by neuroimaging studies. The BIRN project
uses the Storage Resource Broker (SRB) [26], which provides a distributed file system
infrastructure, as a distributed data management middleware layer. MammoGrid [3]
is a multi-institutional project funded by the Europen Union (EU). The objective of
this project is to apply Grid middleware and tools to build a distributed database of
mammograms and to investigate how it can be used to facilitate collaboration between
researchers and clinicians across the EU. eDiamond [30] targets deployment of Grid in-
frastructure to manage, share, and analyze annotated mammograms captured and stored
at multiple sites. One of the goals of MammoGrid and eDiamond is to develop and pro-
mote standardization in medical image databases for mammography and other cancer
diseases. MEDIGRID [21,33] is another multi-institutionalproject investigating the ap-
plication of Grid technologies for manipulating large medical image databases.

These large scale, multi-institutional projects share the same goal of deploying an
infrastructure, building on Grid technologies, to facilitate sharing of data across institu-
tions. In order to harness the collective power of distributed systems in a Grid environ-
ment, an array of tools and frameworks have been developed to support distributed stor-
age, data replication, data processing, monitoring, security, and high-speed data trans-
fers in Data and Computation Grids [16,15,26,35,7,1,32,34,6,19]. As Grid computing
has become more ubiquitous, an Open Grid Services Architecture (OGSA) [12,13] has
been proposed. There are some recent efforts to develop Grid and Web services imple-
mentations of database technologies. Raman et. al. [27] discusses a number of virtual-
ization services to make data management and access transparent to Grid applications.
These services provide support for access to distributed datasets, dynamic discovery of
data sources, and collaboration. Bell et. al. [5] develop uniform web services interfaces,
data and security models for relational databases. Smith et. al. [29] address the dis-
tributed execution of queries in a Grid environment. They describe an object-oriented
database prototype running on MPICH-G and Globus.

6 Conclusion

We have presented a mechanism for integrated access to large scientific datasets. We have
exposed STORM as a data resource and shown an example usage with the oil reservoir
simulation and seismic data analysis applications and investigated the performance of the
implementation. Our experiments show that the implementation scales well with query
size and with number of data sources. As part of our future work, we will investigate the
possibility of customizing the STORM pipeline based on machine configuration.

Servicing Seismic and Oil Reservoir Simulation Data Through Grid Data Services 141

References

1. W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data
Grid: Towards an architecture for the distributed management and analysis of large scientific
datasets. Journal of Network and Computer Applications, 23:187–200, 2001.

2. M. Alpdemir, A. Mukherjee, A. Gounaris, N. W. Paton, P. Watson, and A. A. Fernandes.
OGSA-DQP: A grid service for distributed querying on the grid. In Proc. 9th International
Conference on Extending Database Technology (EDBT), pages 858–861, 2004.

3. R. Amendolia, F. Estrella, T. Hauer, D. Manset, D. McCabe, R. McClatchey, M. Odeh,
T. Reading, D. Rogulin, D. Schottlander, and T. Solomonides. Grid databases for shared
image analysis in the mammogrid project. In The Eighth International Database Engineer-
ing & Applications Symposium (Ideas’04), July 2004.

4. Asia Pacific BioGrid. http://www.apgrid.org.
5. W. H. Bell, D. Bosio, W. Hoschek, P. Kunszt, G. McCance, and M. Silander. Project spitfite

- towards grid web service databases. http://www.cs.man.ac.uk/grid-db/documents.html.
6. F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy,

C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski. The GrADS Project:
Software support for high-level Grid application development. The International Journal of
High Performance Computing Applications, 15(4):327–344, Nov. 2001.

7. M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and J. Saltz. Distributed
processing of very large datasets with DataCutter. Parallel Computing, 27(11):1457–1478,
Oct. 2001.

8. S. Bokhari, B. Rutt, P. Wyckoff, and P. Buerger. An evaluation of the osc fastt600 turbo stor-
age pool. Technical Report OSUBMI TR 2004 n02, The Ohio State University, Department
of Biomedical Informatics, Sep 2004.

9. Earth Systems Grid (ESG). http://www.earthsystemgrid.org.
10. EUROGRID. http://www.eurogrid.org/.
11. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure. Mor-

gan Kaufmann Publishers, San Francisco, CA, USA, second edition, 2003.
12. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for distributed system integra-

tion. IEEE Computer, 36(6):37–46, June 2002.
13. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the Grid: An

Open Grid Services Architecture for distributed systems integration. http://www.globus.
org/research/papers/ogsa.pdf, 2002.

14. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable vir-
tual organization. The International Journal of High Performance Computing Applications,
15(3):200–222, Fall 2001.

15. J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A computation
management agent for multi-institutional grids. In Proceedings of the Tenth IEEE Symposium
on High Performance Distributed Computing (HPDC10). IEEE Press, Aug 2001.

16. The Globus Project. http://www.globus.org.
17. Grid Physics Network (GriPhyN). http://www.griphyn.org.
18. A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of

SIGMOD’84, pages 47–57. ACM Press, May 1984.
19. S. Hastings, S. Langella, S. Oster, and J. Saltz. Distributed data management and integration:

The mobius project. In GGF Semantic Grid Workshop 2004, pages 20–38. GGF, June 2004.
20. T. Kurc, U. Catalyurek, X. Zhang, J. Saltz, R. Martino, M. Wheeler, M. Peszyńska, A. Suss-

man, C. Hansen, M. Sen, R. Seifoullaev, P. Stoffa, C. Torres-Verdin, and M. Parashar. A
simulation and data analysis system for large scale, data-driven oil reservoir simulation stud-
ies. Concurrency and Computation: Practice and Experience. To appear., 2005.

142 S. Narayanan et al.

21. J. Montagnat, V. Breton, and I. E. Magnin. Using grid technologies to face medical image
analysis challenges. In BioGrid’03, The 3rd International Symposium on Cluster Computing
and the Grid (CCGrid 2003), pages 588–593, May 2003.

22. S. Narayanan, U. Catalyurek, T. Kurc, X. Zhang, and J. Saltz. Applying database support
for large scale data driven science in distributed environments. In Proceedings of the Fourth
International Workshop on Grid Computing (Grid 2003), pages 141–148, Phoenix, Arizona,
Nov 2003.

23. S. Narayanan, T. Kurc, U. Catalyurek, and J. Saltz. Database support for data-driven scientific
applications in the grid. Parallel Processing Letters, 13(2):245–271, 2003.

24. Open Grid Services Architecture Data Access and Integration (OGSA-DAI).
http://www.ogsadai.org.uk.

25. S. Peltier and M. Ellisman. The Biomedical Informatics Research Network, in The Grid,
Blueprint for a New Computing Infrastructure. 2nd Edition: Elsevier, 2003.

26. A. Rajasekar, M. Wan, and R. Moore. MySRB & SRB - components of a data grid. In The
11th International Symposium on High Performance Distributed Computing (HPDC-11),
July 2002.

27. V. Raman, I. Narang, C. Crone, L. Haas, S. Malaika, T. Mukai, D. Wolfson, and C. Baru. Data
access and management services on grid. http://www.cs.man.ac.uk/grid-db/documents.html.

28. J. Saltz, U. Catalyurek, T. Kurc, M. Gray, S. Hastings, S. Langella, S. Narayanan, R. Martino,
S. Bryant, M. Peszynska, M. Wheeler, A. Sussman, M. Beynon, C. Hansen, D. Stredney, and
D. Sessama. Driving scientific applications by data in distributed environments. In Proceed-
ings of Workshop on Dynamic Data Driven Application Systems (International Conference
on Computational Science). Springer-Verlag, June 2003.

29. J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. A. Fernandes, and R. Sakellariou. Dis-
tributed query processing on the grid. http://www.cs.man.ac.uk/grid-db/documents.html.

30. A. Solomonides, R. McClatchey, M. Odeh, M. Brady, M. Mulet-Parada, D. Schottlander,
and S. Amendolia. Mammogrid and ediamond: Grids applications in mammogram analysis.
In Proceedings of the IADIS International Conference: e-Society 2003, pages 1032–1033,
2003.

31. M. Stonebraker and P. Brown. Object-Relational DBMSs, Tracking the Next Great Wave.
Morgan Kaufman Publishers, Inc., 1998.

32. D. Thain, J. Basney, S. Son, and M. Livny. Kangaroo approach to data movement on the grid.
In Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC10), 2001.

33. T. Tweed and S. Miguet. Medical image database on the grid: Strategies for data distribution.
In HealthGrid’03, pages 152–162, Jan. 2003.

34. S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection in the globus data grid. In Interna-
tional Workshop on Data Models and Databases on Clusters and the Grid (DataGrid 2001).
IEEE Computer Society Press, 2001.

35. R. Wolski, N. Spring, and J. Hayes. The network weather service: A distributed resource per-
formance forecasting service for metacomputing. Journal of Future Generation Computing
Systems, 15(5-6):757–768, 1999.

Author Index

Antonioletti, Mario 71

Catalyurek, Umit 129
Comito, Carmela 4

da Silva, Vińıcius F.V. 45
Ding, Allen 113
Dutra, Márcio L. 45

Fernandes, Alvaro A.A. 30
Fomkin, Ruslan 58

Gilbert, Lucas 113
Göres, Jürgen 16
Gounaris, Anastasios 30

Jagatheesan, Arun 113

Krause, Amy 71
Kuramoto, Jeffrey 113
Kurc, Tahsin 129

Mathew, Reena 113
Moore, Daniel 113
Moore, Reagan W. 1, 113

Narayanan, Sivaramakrishnan 129

Otoo, Ekow 85

Paton, Norman W. 30, 71
Porto, Fabio 45

Risch, Tore 58
Romosan, Alexandru 85
Rotem, Doron 85

Sakellariou, Rizos 30
Saltz, Joel 129
Schulze, Bruno 45
Seshadri, Sridhar 85
Shoshani, Arie 100
Sim, Alex 100
Smith, Jim 30
Stockinger, Kurt 100

Talia, Domenico 4
Tran, Mark 113

Vandekieft, Erik 113

Watson, Paul 30
Weinberg, Jonathan 113

	Frontmatter
	Globally Distributed Data
	XML Data Integration in OGSA Grids
	Towards Dynamic Information Integration
	Adapting to Changing Resource Performance in Grid Query Processing
	An Adaptive Distributed Query Processing Grid Service
	Framework for Querying Distributed Objects Managed by a Grid Infrastructure
	An Outline of the Global Grid Forum Data Access and Integration Service Specifications
	File Caching in Data Intensive Scientific Applications on Data-Grids
	RRS: Replica Registration Service for Data Grids
	Datagridflows: Managing Long-Run Processes on Datagrids
	Servicing Seismic and Oil Reservoir Simulation Data Through Grid Data Services
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

